Learn More
Context. The LOFAR (LOw Frequency ARray) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various(More)
A model for determining the cross-correlation function of partially correlated noise is presented. In this model a strong interferer is included and represented by a periodic signal common to both channels of the correlator. A general expression for the correlation function is deduced and verified. The power spectrum of a calculated correlation function is(More)
Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric " radio window " : 10–240 MHz, that will greatly facilitate observing pulsars at low radio frequencies. Through the huge collecting area,(More)
ASTRON is building the world's largest radio telescope for low frequencies, LOFAR. LOFAR is optimized for detecting astronomical signals in the 30-80 MHz and 120-240 MHz frequency windows. Since this part of the spectrum is in extensive use by others, a special RFI mitigation strategy is implemented which will be described in the paper. International RFI(More)
Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected(More)
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic(More)