Learn More
CONTEXT The perception of pain due to an acute injury or in clinical pain states undergoes substantial processing at supraspinal levels. Supraspinal, brain mechanisms are increasingly recognized as playing a major role in the representation and modulation of pain experience. These neural mechanisms may then contribute to interindividual variations and(More)
The role of the brain in chronic pain conditions remains speculative. We compared brain morphology of 26 chronic back pain (CBP) patients to matched control subjects, using magnetic resonance imaging brain scan data and automated analysis techniques. CBP patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and(More)
Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b) the characteristic path length is small and(More)
Chronic pain can result in anxiety, depression and reduced quality of life. However, its effects on cognitive abilities have remained unclear although many studies attempted to psychologically profile chronic pain. We hypothesized that performance on an emotional decision-making task may be impaired in chronic pain since human brain imaging studies show(More)
Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD) signal. Resting-state BOLD signal was transformed into frequency space (Welch's method) and averaged across(More)
Chronic complex regional pain syndrome (CRPS) is a debilitating pain condition accompanied by autonomic abnormalities. We investigated gray matter morphometry and white matter anisotropy in CRPS patients and matched controls. Patients exhibited a disrupted relationship between white matter anisotropy and whole-brain gray matter volume; gray matter atrophy(More)
Chronic pain is maladaptive and influences brain function and behavior by altering the flow and integration of information across brain regions. Here we use a power spectral analysis to investigate impact of presence of chronic pain on brain oscillatory activity in humans. We examine changes in BOLD fluctuations, across different frequencies, in chronic(More)
The mechanism of brain reorganization in pain chronification is unknown. In a longitudinal brain imaging study, subacute back pain (SBP) patients were followed over the course of 1 year. When pain persisted (SBPp, in contrast to recovering SBP and healthy controls), brain gray matter density decreased. Initially greater functional connectivity of nucleus(More)
In this review, we integrate recent human and animal studies from the viewpoint of chronic pain. First, we briefly review the impact of chronic pain on society and address current pitfalls of its definition and clinical management. Second, we examine pain mechanisms via nociceptive information transmission cephalad and its impact and interaction with the(More)
Living with unrelenting pain (chronic pain) is maladaptive and is thought to be associated with physiological and psychological modifications, yet there is a lack of knowledge regarding brain elements involved in such conditions. Here, we identify brain regions involved in spontaneous pain of chronic back pain (CBP) in two separate groups of patients (n =(More)