A. V. Whitmore

Learn More
Neurons seem to have at least two self-destruct programs. Like other cell types, they have an intracellular death program for undergoing apoptosis when they are injured, infected, or not needed. In addition, they apparently have a second, molecularly distinct self-destruct program in their axon. This program is activated when the axon is severed and leads(More)
Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using(More)
Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs). Substantial effort is being expended to determine how RGCs die in glaucoma. As in other neurodegenerative diseases, the majority of effort focuses on characterising apoptotic self-destruct pathways. However, apoptosis is not the only self-destruct mechanism that may(More)
The spectral absorbances of visual pigments and retinal oil droplets were studied in three groups of Japanese quail (Coturnix coturnix japonica): an unselected control population and two artificially selected strains that exhibited different early approach preferences between blue and red stimuli. The oil droplets were examined with and without prior(More)
Microspectrophotometric and electroretinographic investigation of photoreceptor spectral sensitivity in the rudd Scardinius erythrophthalmus has revealed four spectral classes of cone with peak sensitivity in the ultra-violet, violet, green and red regions of the spectrum. These peak sensitivities were found to vary seasonally, and in response to artificial(More)
Asymmetric segregation of cell-fate determinants during cytokinesis plays an important part in controlling cell-fate choice in invertebrates. During Drosophila neurogenesis, for example, asymmetric segregation of the Numb protein, which inhibits Notch signaling, is necessary for the two daughter cells of a division to have different fates. In vertebrates,(More)
Melanin, or products directly associated with it, regulates the maturation of the neural retina because in hypopigmented mammals the central retina fails to develop fully. To determine whether this deficit is reflected in the distribution of photoreceptors, their topography has been studied in the retinae of normally reared pigmented and albino ferrets and(More)
Recent studies have highlighted a potential link between the cleavage orientation of a dividing neuroblast and the regulation of daughter cell fate in the developing vertebrate retina. There is evidence to suggest that this process is at least partially regulated by the presence of the retinal pigment epithelium (RPE) and/or RPE-derived factors. In addition(More)
Given the tremendous growth of bioactivity databases, the use of computational tools to predict protein targets of small molecules has been gaining importance in recent years. Applications span a wide range, from the 'designed polypharmacology' of compounds to mode-of-action analysis. In this review, we firstly survey databases that can be used for(More)