A. V. Kimel

Learn More
Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of(More)
The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing(More)
Using time-resolved single-shot pump-probe microscopy we unveil the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse. We demonstrate that the reversal has a linear character, i.e., does not involve precession but occurs via a strongly nonequilibrium state. Calculations show that the(More)
All magnetically ordered materials can be divided into two primary classes: ferromagnets and antiferromagnets. Since ancient times, ferromagnetic materials have found vast application areas, from the compass to computer storage and more recently to magnetic random access memory and spintronics. In contrast, antiferromagnetic (AFM) materials, though(More)
We demonstrate that the ultrafast fast dynamics of the d-f exchange interaction, between conduction band electrons and lattice spins in EuTe, can be accessed using an all-optical technique. Our results reveal, in full detail, the time evolution of the d-f exchange interaction induced by a femtosecond laser pulse. Specifically, by monitoring the time(More)
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of(More)
We present results of detailed experimental and theoretical studies of all-optical magnetization reversal by single circularly-polarized laser pulses in ferrimagnetic rare earth—transition metal (RE–TM) alloys Gd x Fe 90−x Co 10 (20% < x < 28%). Using single-shot time-resolved magneto-optical microscopy and multiscale simulations, we identified and(More)
Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond(More)
  • 1