Learn More
A seven-channel system capable of performing both magnetoencephalography (MEG) and ultra-low-field magnetic resonance imaging (ULF MRI) is described. The system consists of seven second-order SQUID gradiometers with 37 mm diameter and 60 mm baseline, having magnetic field resolution of 1.2-2.8 fT/radicHz . It also includes four sets of coils for 2D Fourier(More)
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed(More)
We demonstrate a dramatic increase in the signal-to-noise ratio (SNR) of a nuclear quadrupole resonance (NQR) signal by using a polarization enhancement technique. By first applying a static magnetic field to pre-polarize one spin subsystem of a material, and then allowing that net polarization to be transferred to the quadrupole subsystem, we increased the(More)
Modern high field (HF) MRI uses magnetic fields greater than 1.5 T to yield exquisite anatomical features. We have also seen an explosion in functional MRI in the last decade that measures hemodynamic responses that are ultimately sluggish (~one sec) and only indirectly related to electrophysiological processes. Magnetoencephalography (MEG) is a direct(More)
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) methods are widely used in medicine, chemistry and industry. Over the past several years there has been increasing interest in performing NMR and MRI in the ultra-low field (ULF) regime, with measurement field strengths of 10-100 microTesla and pre-polarization fields of(More)
  • 1