Learn More
Context. Despite all advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. The present work devises an alternative to the mixing length theory or turbulence models usually adopted for the modelling of convective transport in such studies. Aims. A time dependent(More)
Context. In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims. The present work(More)
We present a new implicit numerical discretization for the equations of radiation hydrodynamics (RHD) which is based on a more geometrical representation of a finite volume scheme suitable for spherical systems. In particular, the motion of the grid points is directly included by appropriate volume changes. Several examples illustrate the accuracy gained by(More)
  • 1