Learn More
Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite(More)
Budding yeast RNA polymerase III (Pol III) contains a small, essential subunit, named C11, that is conserved in humans and shows a strong homology to TFIIS. A mutant Pol III, heterocomplemented with Schizosaccharomyces pombe C11, was affected in transcription termination in vivo. A purified form of the enzyme (Pol III Delta), deprived of C11 subunit,(More)
There is limited information on how eukaryotic RNA polymerases (Pol) recognize their cognate preinitiation complex. We have characterized a polypeptide copurifying with yeast Pol III. This protein, C17, was found to be homologous to a mammalian protein described as a hormone receptor. Deletion of the corresponding gene, RPC17, was lethal and its regulated(More)
Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant(More)
A multicopy genomic library of Saccharomyces cerevisiae (strain FL100) was screened for its ability to suppress conditionally defective mutations altering the 31 kDa subunit (rpc31-236) or the 53 kDa subunit (rpc53-254/424) of RNA polymerase III. In addition to allele-specific suppressors, we identified seven suppressor clones that acted on both mutations(More)
RNA polymerase I (Pol I) is dedicated to transcription of the large ribosomal DNA (rDNA). The mechanism of Pol I recruitment onto rDNA promoters is poorly understood. Here we present evidence that subunit A43 of Pol I interacts with transcription factor Rrn3: conditional mutations in A43 were found to disrupt the transcriptionally competent Pol I-Rrn3(More)
We report genome-wide analyses that establish Maf1 as a general and direct repressor of yeast RNA polymerase (Pol) III transcription. Chromatin immunoprecipitation (ChIP) coupled to microarray hybridization experiments showed an increased association of Maf1 to Pol III-transcribed genes under repressing condition (rapamycin treatment) correlated with a(More)
RNA polymerase III (RNAPIII) synthesizes tRNA, 5S RNA, U6 snRNA, and other small RNAs. The structure of yeast RNAPIII, determined at 17 A resolution by cryo-electron microscopy and single-particle analysis, reveals a hand-like shape typical of RNA polymerases. Compared to RNAPII, RNAPIII is characterized by a bulkier stalk and by prominent features(More)