Learn More
Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite(More)
Budding yeast RNA polymerase III (Pol III) contains a small, essential subunit, named C11, that is conserved in humans and shows a strong homology to TFIIS. A mutant Pol III, heterocomplemented with Schizosaccharomyces pombe C11, was affected in transcription termination in vivo. A purified form of the enzyme (Pol III Delta), deprived of C11 subunit,(More)
The AC40 and AC19 subunits (encoded by RPC40 and RPC19) are shared by yeast RNA polymerases I and III and have a local sequence similarity to prokaryotic alpha subunits. Mutational analysis of the corresponding "alpha motif" indicated that its integrity is essential on AC40 subunit but is not essential on AC19 subunit. By applying the two-hybrid method,(More)
Yeast RNA polymerases A and C share an approximately equal to 40 kd subunit. We have identified, sequenced, and mutagenized in vitro the AC40 subunit gene. The RPC40 gene is unique in the yeast genome and is required for cell viability. This gene contains an open reading frame encoding a 37.6 kd protein having no significant homology with bacterial RNA(More)
RNA polymerase I (Pol I) is dedicated to transcription of the large ribosomal DNA (rDNA). The mechanism of Pol I recruitment onto rDNA promoters is poorly understood. Here we present evidence that subunit A43 of Pol I interacts with transcription factor Rrn3: conditional mutations in A43 were found to disrupt the transcriptionally competent Pol I-Rrn3(More)
Yeast RNA polymerases A (I) and C (III) share a subunit called AC19. The gene encoding AC19 has been isolated from yeast genomic DNA using oligonucleotide probes deduced from peptide sequences of the isolated subunit. This gene (RPC19) contains an intron-free open reading frame of 143 amino acid residues. RPC19 is a single copy gene that maps on chromosome(More)
A multicopy genomic library of Saccharomyces cerevisiae (strain FL100) was screened for its ability to suppress conditionally defective mutations altering the 31 kDa subunit (rpc31–236) or the 53 kDa subunit (rpc53-254/424) of RNA polymerase III. In addition to allele-specific suppressors, we identified seven suppressor clones that acted on both mutations(More)
While screening for genes that affect the synthesis of yeast snRNPs, we identified a thermosensitive mutant that abolishes the production of a reporter snRNA at the non-permissive temperature. This mutant defines a new gene, named BDF1. In a bdf1-1 strain, the reporter snRNA synthesized before the temperature shift remains stable at the non-permissive(More)
Transcription of small genes by RNA polymerase III or C (pol III) involves many of the strategies that are used for transcription complex formation and occasionally the same components as those used by RNA polymerase II or B (pol II). Transcription complex formation is a multistep process that leads to the binding of a single initiation factor, TFIIIB,(More)
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping(More)