Learn More
Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that(More)
Half of the microbial cells in the Earth's oceans are found in sediments. Many of these cells are members of the Archaea, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that(More)
ALMOST ALL LUMBRICID EARTHWORMS (OLIGOCHAETA Lumbricidae) harbor extracellular species-specific bacterial symbionts of the genus Verminephrobacter (Betaproteobacteria) in their nephridia. The symbionts have a beneficial effect on host reproduction and likely live on their host's waste products. They are vertically transmitted and presumably associated with(More)
The acetogens Sporomusa silvacetica, Moorella thermoacetica, Clostridium magnum, Acetobacterium woodii, and Thermoanaerobacter kivui (i) grew in both semisolid and liquid cultivation media containing O(2) and (ii) consumed small amounts of O(2). Low concentrations of O(2) caused a lag phase in growth but did not alter the ability of these acetogens to(More)
While genomic erosion is common among intracellular symbionts, patterns of genome evolution in heritable extracellular endosymbionts remain elusive. We study vertically transmitted extracellular endosymbionts (Verminephrobacter, Betaproteobacteria) that form a beneficial, species-specific, and evolutionarily old (60-130 Myr) association with earthworms. We(More)
Clone library-based studies have shown that almost all lumbricid earthworm species harbour host-specific symbiotic bacteria belonging to the novel genus Verminephrobacter in their nephridia (excretory organs). To date the only described representative from this genus is Verminephrobacter eiseniae, the specific symbiont of the earthworm Eisenia fetida. In(More)
Massively parallel computers are necessarily distributed memory architectures (DMA), as only DMAs offer unlimited upward scalability. However, the usual programming model for DMAs, the message-passing paradigm, is too difficult to make such machines acceptable for a larger community of users. Therefore, easier high-level programming models are needed, in(More)
The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The(More)
Bacillus azotoformans MEV2011, isolated from soil, is a microaerotolerant obligate denitrifier, which can also produce N2 by co-denitrification. Oxygen is consumed but not growth-supportive. The draft genome has a size of 4.7 Mb and contains key genes for both denitrification and dissimilatory nitrate reduction to ammonium.
In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this(More)