A R Rinehart

Learn More
Several pentacyclic triterpenoid metabolites of plant origin are inhibitors of hydrolysis of both synthetic peptide substrates and elastin by human leucocyte elastase (HLE). Ursolic acid, the most potent of these compounds, has an inhibition constant of 4-6 microM for hydrolysis of peptide substrates in phosphate-buffered saline. With tripeptide and(More)
Plasminogen is the zymogen form of the serine proteinase plasmin. Although plasmin functions primarily as a fibrinolytic enzyme, recent evidence from numerous laboratories indicates that plasmin is also active in extracellular-matrix (ECM) proteolysis. The role of plasmin in ECM degradation suggests that activation of plasminogen may be regulated by(More)
Substantial evidence indicates that proteolytic degradation of the extracellular matrix is necessary for invasion and metastasis by cancer cells. Our previous work has demonstrated elevated secretion by cultured ovarian adenocarcinoma cells of two gelatinolytic metalloproteinases, a 72-kDa enzyme resembling matrix metalloproteinase 2 (MMP-2) and a 92-kDa(More)
Human neutrophils contain large amounts of a neutral serine protease, human neutrophil elastase (HNE), which has been implicated as a mediator of acute and chronic lung injury. We found that this enzyme is effectively inhibited, at physiological ionic strength, by several synthetic non-base-paired polyribonucleotides. Among the most active of these is(More)
alpha 1-Proteinase inhibitor (alpha 1-PI) is the major endogenous inhibitor of human leukocyte elastase (HLE). We have employed two different methods to quantitate the binding of alpha 1-PI to extracellular matrix (ECM), composed of 51% glycoproteins and proteoglycans, 37% types I and III collagen, and 12% elastin, derived from rat heart smooth muscle(More)
  • 1