Learn More
Glioblastoma multiforme (GBM) is a devastating brain tumor with poor prognosis and low median survival time. Standard treatment includes radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). However, a large percentage of tumors are resistant to the cytotoxic effects of the TMZ-induced DNA lesion O(6)-methylguanine due to elevated(More)
BACKGROUND Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer. METHODS(More)
Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation(More)
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance [DNA polymerase beta (Polbeta) deficiency or repair inhibition] enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation(More)
Nucleotide sequences of the long terminal repeats (LTRs) of four murine intracisternal A-particle (IAP) genes IAP62, 19, 81 and 14 were determined. Each IAP LTR contains three sequence domains, 5'-U3-R-U5-3', and each is bound by 4 bp imperfect inverted repeats. The transcriptional regulatory sequences, CAAT and TATA, as well as the enhancer core sequence(More)
Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase β (Polβ) and XRCC1 is thought to facilitate repair by recruiting Polβ to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair.(More)
BACKGROUND Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the(More)
BACKGROUND Altered expression of DNA polymerase beta (Pol beta) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS We have recently developed a novel transgenic mouse model that(More)
Biogeochemical processes mediated by Fe(III)-reducing bacteria such as Shewanella oneidensis have the potential to influence the post-closure evolution of a geological disposal facility for radioactive wastes and to affect the solubility of some radionuclides. Furthermore, their potential to reduce both Fe(III) and radionuclides can be harnessed for the(More)
  • 1