Learn More
Since the recently reported giant isotope effect on T* [1] could be consistently explained within an anharmonic spin-charge-phonon interaction model, we consider here the role played by stripe formation on the superconducting properties within the same model. This is a two-component scenario and we recast its basic elements into a BCS effective Hamiltonian.(More)
Neuronal communication in the brain involves electrochemical currents, which produce magnetic fields. Stimulus-evoked brain responses lead to changes in these fields and can be studied using magneto- and electro-encephalography (MEG/EEG). In this paper we model the spatiotemporal distribution of the magnetic field of a physiologically idealized but(More)
The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La(1-x-y)Pr(y)Ca(x)MnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials--the dramatic reduction of resistivity in a magnetic(More)
The range of validity of a recently proposed deterministic (mean field) model of the spread of the Hantavirus infection is studied with the help of Monte Carlo simulations for the evolution of mice populations. The simulation is found to reproduce earlier results on the average but to display additional behavior stemming from discreteness in mice number and(More)
A study of the micromechanical unzipping of DNA in the framework of the Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique that allows accurate determination of the dependence of the unzipping forces on unzipping speed and temperature. Our findings agree quantitatively with experimental results for homogeneous DNA, and for(More)
It appears that thermally activated DNA bubbles of different sizes play central roles in important genetic processes. Here we show that the probability for the formation of such bubbles is regulated by the number of soft AT pairs in specific regions with lengths which at physiological temperatures are of the order of (but not equal to) the size of the(More)
Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x) , which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xi. A collective coordinate approach shows(More)