Learn More
Neuronal communication in the brain involves electrochemical currents, which produce magnetic fields. Stimulus-evoked brain responses lead to changes in these fields and can be studied using magneto- and electro-encephalography (MEG/EEG). In this paper we model the spatiotemporal distribution of the magnetic field of a physiologically idealized but(More)
We study analytically and numerically continuum models derived on the basis of Padé approximations and their effectiveness in modeling spatially discrete systems. We not only analyze features of the temporal dynamics that can be captured through these continuum approaches (e.g., shape oscillations, radiation effects, and trapping) but also point out ones(More)
We consider a lattice equation (Salerno model) combining onsite self-focusing and intersite self-defocusing cubic terms, which may describe a Bose-Einstein condensate of dipolar atoms trapped in a strong periodic potential. In the continuum approximation, the model gives rise to solitons in a finite band of frequencies, with sechlike solitons near one edge,(More)
We model a cubic-to-tetragonal martensitic transition by a Ginzburg-Landau free energy in the symmetric strain tensor. We show in three dimensions (3D) that solving the St. Venant compatibility relations for strain, treated as independent field equations, generates three anisotropic long-range potentials between the two order parameter components. These(More)
We investigate the dynamical properties of the one-dimensional discrete nonlinear Schrödinger equation (DNLS) with periodic boundary conditions and with an arbitrary distribution of on-site defects. We study the propagation of a traveling plane wave with momentum k: the dynamics in Fourier space mainly involves two localized states with momenta +/-k(More)
Since the recently reported giant isotope effect on T* [1] could be consistently explained within an anharmonic spin-charge-phonon interaction model, we consider here the role played by stripe formation on the superconducting properties within the same model. This is a two-component scenario and we recast its basic elements into a BCS effective Hamiltonian.(More)
Short-wave ultra-violet light promotes the formation of DNA dimers between adjacent thymine bases, and if unrepaired these dimers may induce skin cancer. Living cells have a very robust repair system capable of repairing hundreds of lesions every day. Although many of the details of the dimer repair mechanism are known, it is still a mystery how the dimers(More)
We consider the influence of a terahertz field on the breathing dynamics of double-stranded DNA. We model the spontaneous formation of spatially localized openings of a damped and driven DNA chain, and find that linear instabilities lead to dynamic dimerization, while true local strand separations require a threshold amplitude mechanism. Based on our(More)
The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La(1-x-y)Pr(y)Ca(x)MnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials--the dramatic reduction of resistivity in a magnetic(More)