Learn More
Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements and posterior migration of hindbrain neurons. Here, we(More)
The mechanisms underlying neuronal specification and axonogenesis in the vertebrate hindbrain are poorly understood. To address these questions, we have employed anatomical methods and mutational analysis to characterize the branchiomotor neurons in the zebrafish embryo. The zebrafish branchiomotor system is similar to those in the chick and mouse, except(More)
Newborn neurons migrate extensively in the radial and tangential directions to organize the developing vertebrate nervous system. We show here that mutations in zebrafish trilobite (tri) that affect gastrulation-associated cell movements also eliminate tangential migration of motor neurons in the hindbrain. In the wild-type hindbrain, facial (nVII) and(More)
During hindbrain development, facial branchiomotor neurons (FBM neurons) migrate from medial rhombomere (r) 4 to lateral r6. In zebrafish, mutations in planar cell polarity genes celsr2 and frizzled3a block caudal migration of FBM neurons. Here, we investigated the role of cadherins Celsr1-3, and Fzd3 in FBM neuron migration in mice. In Celsr1 mutants(More)
The cranial motor neurons innervate muscles that control eye, jaw, and facial movements of the vertebrate head and parasympathetic neurons that innervate certain glands and organs. These efferent neurons develop at characteristic locations in the brainstem, and their axons exit the neural tube in well-defined trajectories to innervate target tissues. This(More)
The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1(-)) mutants, whereas motor neuron(More)
Candida albicans WO-1 switches spontaneously, frequently, and reversibly between a hemispherical white and a flat gray (opaque) colony-forming phenotype. This transition affects a number of morphological and physiological parameters and involves the activation and deactivation of phase-specific genes. The WH11 gene is transcribed in the white but not the(More)
The zebrafish detour (dtr) mutation generates a novel neuronal phenotype. In dtr mutants, most cranial motor neurons, especially the branchiomotor, are missing. However, spinal motor neurons are generated normally. The loss of cranial motor neurons is not due to aberrant hindbrain patterning, failure of neurogenesis, increased cell death or absence of hh(More)
Semaphorins/collapsins are a large family of secreted and cell surface molecules that are thought to guide growth cones to their targets. Although some members are clearly repulsive to specific growth cones in vitro, the in vivo role of many of these molecules in vertebrate embryos is still unclear. As a first step towards clarifying the in vivo role of(More)
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in(More)