A. Pethalakshmi

Learn More
Web usage mining exploits data mining techniques to discover valuable information from navigation behavior of World Wide Web (WWW) users. The required information is captured by Web servers and stored in Web usage data logs. The first phase of Web usage mining is the pre processing phase. In the preprocessing phase, first, relevant information is filtered(More)
Unsupervised clustering is an essential technique in Datamining. Since feature selection is a valuable technique in data analysis for information preserving data reduction, researchers have made use of the rough set theory to construct reducts by which the unsupervised clustering is changed into the supervised reduct. Rule identification involves the(More)
Fuzzy approaches can play an important role in data mining, because they provide comprehensible results. In addition, the approaches studied in data mining have mainly been oriented at highly structured and precise data. In this paper, we examine the performance of four fuzzy classifiers on heart data. The fusion of Fuzzy Logic with the classifiers Decision(More)
Grid computing is a service for sharing computer resources and data storage capacity over the internet. As resource requirements of recent applications increased greatly, grid systems have gained importance in the last decade. Resource discovery is the essential job in Grid computing which provides searching and identifying necessary resources for given(More)
Microcalcification on X-ray mammogram is a significant mark for early detection of breast cancer. Texture analysis methods can be applied to detect clustered microcalcification in digitized mammograms. In order to improve the predictive accuracy of the classifier, the original number of feature set is reduced into smaller set using feature reduction(More)
Ant colony optimization (ACO) algorithms have been applied successfully to combinatorial optimization problems. More recently, Parpinelli et al have applied ACO to data mining classification problems, where they introduced a classification algorithm called Ant Miner. In this paper, we present a hybrid system that combines both the proposed Enhanced(More)
Clustering is widely used technique in data mining application for discovering patterns in large data set. In this paper the K-Means and Fuzzy C-Means algorithm is analyzed and found that quality of the resultant cluster is based on the initial seeds where it is selected either sequentially or randomly. For real time large database it's difficult to predict(More)
Molecular computing is a discipline that aims at harnessing individual molecules for computational purposes. This paper presents the applied Mathematical sciences using DNA molecules. The Major achievements are outlined the potential advances and the challenges for the practitioners in the foreseeable future. The Binary Optimization in Linear Programming is(More)