Learn More
The increase of brain size relative to body size-encephalization-is intimately linked with human evolution. However, two genetically different evolutionary lineages, Neanderthals and modern humans, have produced similarly large-brained human species. Thus, understanding human brain evolution should include research into specific cerebral reorganization,(More)
The cerebellum is a modular structure that integrates information in a topographical manner. The membrane receptors of the Eph family and their ligands play important roles in early regionalization, as well as in the formation of topographic connections of the nervous system. Here, we show that the expression of the Eph receptors -A4 and -A7, and of their(More)
This paper analyses the occipital remains recovered from the El Sidrón (Asturias, Spain) Neandertal site between the years of 2000-2008. The sample is represented by three specimens, SD-1219, SD-1149, and SD-370a. Descriptive morphology, linear measurements, 3D geometric morphometrics, and virtual anthropological methods were employed to address the(More)
The endocranial surface description and comparative analyses of two new neandertal occipital fragments (labelled SD-1149 and SD-370a) from the El Sidrón site (Asturias, Spain) reveal new aspects of neandertal brain morphological asymmetries. The dural sinus drainage pattern, as observed on the sagittal-transverse system, as well as the cerebral(More)
Occipital growth depends on coordinated deposition and resorption on the external and internal surface and includes interrelated processes of movement: cortical drift, displacement, and relocation. The current work aspires to map patterns of remodeling activity on the endocranial surface of the occipital bone from childhood to adulthood using a larger study(More)
The non-inducible chaperone heat shock cognate 70 kDa (Hsc70) is regulated during development. We now characterize its dynamic expression pattern from gastrulation to early organogenesis. Throughout this developmental period, hsc70 transcripts were largely restricted to neuroectoderm- and mesoderm-derived structures. In stage 10 embryos, Hsc70 protein was(More)
It has long been maintained that the ciliary muscle derives from mesenchymal cells. The embryonic development of the avian ciliary muscle was studied in chick embryos from stage 25 HH to the time of hatching. Serial sections of the eye were stained routinely or immunocytochemically using the monoclonal antibody 13F4, which recognizes a cytoplasmic antigen(More)
We addressed the brain drainage system as inferred by the endocranial morphology of the occipito-temporal region of the El Sidrón Neandertal specimen SD-1219. Morphological details of the endocranial surface and its anatomical implications were analyzed for the reconstruction of the dural sinus drainage pattern and its comparison with Neandertals and other(More)
The cerebellum is a highly conserved structure in the Central Nervous System (CNS) of vertebrates, and is involved in the coordination of voluntary motor behaviour. Supporting this function, the cerebellar cortex presents a layered structure which requires a precise spatial and temporal coordination of proliferation, migration and differentiation events.(More)
Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two(More)