Learn More
Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission,(More)
Patterning matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively. In nanoscale crystals, quantum size effects and(More)
We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the(More)
The development of colloidal quantum dots has led to practical applications of quantum confinement, such as in solution-processed solar cells, lasers and as biological labels. Further scientific and technological advances should be achievable if these colloidal quantum systems could be electronically coupled in a general way. For example, this was the case(More)
The function of neural circuits is an emergent property that arises from the coordinated activity of large numbers of neurons. To capture this, we propose launching a large-scale, international public effort, the Brain Activity Map Project, aimed at reconstructing the full record of neural activity across complete neural circuits. This technological(More)
We show that a relatively simple approach for controlling the colloidal synthesis of anisotropic cadmium selenide semiconductor nanorods can be extended to the size-controlled preparation of magnetic cobalt nanorods as well as spherically shaped nanocrystals. This approach helps define a minimum feature set needed to separately control the sizes and shapes(More)
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the(More)
Colloidal nanocrystals are solution-grown, nanometre-sized, inorganic particles that are stabilized by a layer of surfactants attached to their surface. The inorganic cores possess useful properties that are controlled by their composition, size and shape, and the surfactant coating ensures that these structures are easy to fabricate and process further(More)
Hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form because of the difference in diffusion rates between two components in a diffusion couple. Starting with cobalt nanocrystals, we show that their reaction in solution with oxygen and either sulfur or selenium leads to the formation of hollow(More)