A. Navas

Learn More
The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous(More)
We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators' natural frequencies and the network's degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the(More)
We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this(More)
We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is(More)
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as(More)
Flow accumulation algorithms (FAAs) predict the cumulative upstream drainage but each FAA generates a different map and this uncertainty still remains unsolved. This study makes advances in flow path research by testing 8 FAAs and analyzing the uncertainties of 15 simulations. The DR2-2013 © SAGAv1.0 hydrological software is presented in a study carried out(More)
Many listeners with medium-severe hearing loss present audiograms with high frequency loss descending profiles. These patients can resolve spectral cues normally for lower frequency signals but they often show less ability to use high frequency information. We have presented in this paper a new Discrete Exponential Transform (DET), its fundamentals, and the(More)
  • 1