A N Tony Kong

Learn More
Cellular responses to xenobiotic-induced stress can signal proliferation, differentiation, homeostasis, apoptosis, or necrosis. To better understand the underlying molecular mechanisms after exposure to xenobiotics or drugs, we studied the signal transduction pathways, the mitogen-activated protein kinase (MAPK), and the basic leucine zipper transcription(More)
Antioxidant response element (ARE) regulates the induction of a number of cellular antioxidant and detoxifying enzymes. However, the signaling pathways that lead to ARE activation remain unknown. Here, we report that the expression of mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1), transforming growth(More)
Resveratrol, a phenolic compound found in grapes and other food products, prevents chemical-induced carcinogenesis in a number of animal models of cancers. To better understand its chemopreventive property, we examined effects of resveratrol on the activity of activator protein 1 (AP-1), a dimeric transcription factor that plays a critical role in the(More)
Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and(More)
Purpose. Phenethyl isothiocyanate (PEITC) has been of great interest as a promising cancer chemopreventive agent. To better understand its chemopreventive activity, we examined the effect of PEITC on the antioxidant responsive element (ARE), which is an important gene regulatory element of many phase II drug-metabolizing/detoxification enzymes as well as(More)
Mitogen-activated protein kinase (MAPK) cascades are activated by diverse extracellular signals and participate in the regulation of an array of cellular programs. In this study, we investigated the roles of MAPKs in the induction of phase II detoxifying enzymes by chemicals. Treatment of human hepatoma (HepG2) and murine hepatoma (Hepa1c1c7) cells with(More)
Many chemopreventive agents have been shown to modulate gene expression including induction of phase II detoxifying enzymes, such as glutathione S-transferases (GST) and quinone reductases (QR). Induction of phase II enzymes in general leads to protection of cells/tissues against exogenous and/or endogenous carcinogenic intermediates. The antioxidant or(More)
Isothiocyanates exert strong anticarcinogenic effects in a number of animal models of cancer, presumably by modulation of xenobiotic-metabolizing enzymes, such as by inhibition of cytochrome P-450 and/or by induction of phase II detoxifying enzymes. Here, we report that phenethyl isothiocyanate and other structurally related isothiocyanates, phenylmethyl(More)
Phenolic antioxidant butylated hydroxyanisole (BHA) is a commonly used food preservative with broad biological activities, including protection against acute toxicity of chemicals, modulation of macromolecule synthesis and immune response, induction of phase II detoxifying enzymes, and especially its potential tumor-promoting activities. Understanding the(More)
Tamoxifen (TAM) is widely used in the treatment of breast cancer. The cytostatic effects of TAM have been attributed to the antagonism of estrogen receptor (ER) and inhibition of estrogen-dependent proliferative events. However, the mechanism by which TAM is also effective against certain ER-negative breast tumors remains to be elucidated. Here we report(More)