Learn More
Oxidative stress, an imbalance toward the pro-oxidant side of the pro-oxidant/antioxidant homeostasis, occurs in several human diseases. Among these diseases are those in which high levels of protein carbonyl (CO) groups have been observed, including Alzheimer's disease (AD), rheumatoid arthritis, diabetes, sepsis, chronic renal failure, and respiratory(More)
Protein S-glutathionylation, the reversible formation of mixed disulfides between glutathione and low-pKa cysteinyl residues, not only is a cellular response to mild oxidative/nitrosative stress, but also occurs under basal (physiological) conditions. S-glutathionylation has now emerged as a potential mechanism for dynamic, posttranslational regulation of a(More)
Oxidative/nitrosative stress, a pervasive condition of increased amounts of reactive oxygen/nitrogen species, is now recognized to be a prominent feature of many acute and chronic diseases and even of the normal aging process. However, definitive evidence for this association has often been lacking because of recognized shortcomings with biomarkers and/or(More)
Oxidative modifications of enzymes and structural proteins play a significant role in the aetiology and/or progression of several human diseases. Protein carbonyl content is the most general and well-used biomarker of severe oxidative protein damage. Human diseases associated with protein carbonylation include Alzheimer's disease, chronic lung disease,(More)
Actin is the major constituent of the cytoskeleton of almost all the eukaryotic cells. In vitro experiments have indicated that oxidant-stressed nonmuscle mammalian cells undergo remarkable changes in their morphology and in the structure of the actin cytoskeleton, often resulting in plasma membrane blebbing. Although the microfilament network is one of the(More)
Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative(More)
Plasma low molecular mass thiols are represented by glutathione, cysteine, cysteinylglycine and homocysteine. The physiological mechanisms responsible for maintaining the homeostasis of these compounds in the intracellular and extracellular spaces have not been fully clarified. Erythrocytes possess the enzymatic machinery to synthesize glutathione and an(More)
Haemoglobins bearing reactive sulfhydryl groups have been shown to be able to interplay with glutathione in some detoxification processes. Blood from different mouse strains commonly used as experimental animal models, i.e., C57, DBA and ICR, was treated with oxidants with the aim of evaluating: (i) the involvement of protein SH groups in oxido-reductive(More)
Pigmentation of body surface in animals can have multiple determinants and accomplish diverse functions. Eumelanin and pheomelanin are the main animal pigments, being responsible of yellow, brownish-red and black hues, and have partly common biosynthetic pathways. Many populations of vertebrates show individual variation in melanism, putatively with large(More)
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form(More)