Learn More
The c-Jun N-terminal kinase (JNK) signalling pathway has an established role in cellular stress signalling, cell survival and tumorigenesis. Here, we demonstrate that inhibition of JNK signalling results in partial delocalization of the RNA helicase DDX21 from the nucleolus to the nucleoplasm, increased nucleolar mobility of DDX21 and inhibition of rRNA(More)
The molecular mechanisms by which the AP-1 transcription factor c-Jun exerts its biological functions are not clearly understood. In addition to its well established role in transcriptional regulation of gene expression, several reports have suggested that c-Jun may also regulate cell behavior by non-transcriptional mechanisms. Here, we report that small(More)
DNA topoisomerase I (Topo I) is a molecular target for the anticancer agent topotecan in the treatment of small cell lung cancer and ovarian carcinomas. However, the molecular mechanisms by which topotecan treatment inhibits cancer cell proliferation are unclear. We describe here the identification of Topo I as a novel endogenous interaction partner for(More)
p53 is degraded in cervical cancer cells by the human papillomavirus E6 and can be stabilized with short interfering RNA (siRNA) molecules targeting E6 mRNA. In this in vitro study, we show that E6 siRNA-induced p53 activation is transient in HeLa cervical cancer cells despite continuous suppression of E6 mRNA; activation can be sustained if the endogenous(More)
Homeodomain transcription factors are involved in many developmental processes and have been intensely studied in a few model organisms, such as mouse, Drosophila and Caenorhabditis elegans. Homeobox genes fall into 10 classes (ANTP, PRD, POU, LIM, TALE, SIX, Cut, ZFH, HNF1, Prox) and 89 different families/groups, all of which are present in vertebrates.(More)
In the context of the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we present a study of the emission of rough surfaces at 1.4 GHz and the effects on this emission of a grass litter layer covering the surface. Surface roughness has been studied in some depth in the literature as it is a key influencing parameter on ground(More)
Different biological approaches, highlighting the use of laccases, have been developed as environmentally friendly alternatives for improving the saccharification and fermentation stages of steam-pretreated lignocellulosic biomass. This work evaluates the use of a novel bacterial laccase (MetZyme) for enhancing the hydrolysability and fermentability of(More)