A Marika Grahn

Learn More
DNA translocation across the barriers of recipient cells is not well understood. Viral DNA delivery mechanisms offer an opportunity to obtain useful information in systems in which the process can be arrested to a number of stages. PRD1 is an icosahedral double-stranded (ds)DNA bacterial virus with an internal membrane. It is an atypical dsDNA phage, as any(More)
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1.(More)
Proteins of the VirB4 family are encoded by conjugative plasmids and by type IV secretion systems, which specify macromolecule export machineries related to conjugation systems. The central feature of VirB4 proteins is a nucleotide binding site. In this study, we asked whether members of the VirB4 protein family have similarities in their primary structures(More)
The double-stranded DNA bacteriophage PRD1 uses an IncP plasmid-encoded conjugal transfer complex as a receptor. Plasmid functions in the PRD1 life cycle are restricted to phage adsorption and DNA entry. A single phage structural protein, P2, located at the fivefold capsid vertices, is responsible for PRD1 attachment to its host. The purified recombinant(More)
IncP-type plasmids are broad-host-range conjugative plasmids. DNA translocation requires DNA transfer-replication functions and additional factors required for mating pair formation (Mpf). The Mpf system is located in the cell membranes and is responsible for DNA transport from the donor to the recipient. The Mpf complex acts as a receptor for IncP-specific(More)
IncP plasmid RP1 Tra regions are needed to assemble the receptor for lipid-containing double-stranded DNA bacteriophage PRD1 on the cell surface. Using radioactively labeled phage and electron microscopic techniques, we showed that the surfaces of Salmonella typhimurium(RP1) and Escherichia coli(RP1) cells contained approximately 50 and 20 PRD1 binding(More)
Bacteriophage PM2 is the only described member of the Corticoviridae family. It is an icosahedral dsDNA virus with a membrane residing underneath the protein coat. PM2 infects some gram-negative Pseudoalteromonas spp. In the present study, we mapped the viral promoters and showed that the PM2 genome consists of three operons. Four new virus genes were(More)
PRD1 is a broad-host-range virus that infects Escherichia coli cells. It has a linear double-stranded DNA genome that replicates by a protein-primed mechanism. The virus particle is composed of a protein coat enclosing a lipid membrane. On the basis of this structure, PRD1 is being used as a membrane biosynthesis and structure model. In this investigation,(More)
PRD1, a lipid-containing double-stranded DNA bacteriophage, uses the mating pair formation (Mpf) complex encoded by conjugative IncP plasmids as a receptor. Functions responsible for conjugative transfer of IncP plasmids are encoded by two distinct regions, Tra1 and Tra2. Ten Tra2 region gene products (TrbB to TrbL) and one from the Tra1 region (TraF) form(More)
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components(More)