Learn More
A new peritoneal dialysate containing pyruvate anions was developed in order to avoid cytotoxic effect of conventional lactate-based dialysate. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36-3.86% glucose-monohydrate; 132 mmol/l sodium; 1.75 mmol/l calcium; 0.75 mmol/l magnesium; 102 mmol/l chloride and 35 mmol/l pyruvate. For(More)
Continuous long-time electroencephalographic (EEG) monitoring was performed during acetate and bicarbonate dialysis in 20 patients. Persisting normal basic activity of the EEG without neurological symptoms was found only during the course of bicarbonate dialysis. However, in acetate dialysis, during the decrease of arterial CO2 tension (PaCO2), we(More)
A new peritoneal dialysate containing pyruvate anions has been tested for its effects on cell functions and compared with conventional lactate and bicarbonate based solutions. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36 to 3.86% glucose-monohydrate, 132 mmol/liter sodium, 1.75 mmol/liter calcium, 0.75 mmol/liter magnesium, 102(More)
In patients on continuous ambulant peritoneal dialysis (CAPD) treatment, the peritoneal membrane is continuously exposed to the high glucose concentration contained in the dialysate. This may lead to the local generation of advanced glycation end-products (AGEs). To test this hypothesis we evaluated the plasma and dialysate AGE concentrations in five CAPD(More)
We studied the effects of coating of dialyser membranes with plasma proteins on the permeation of bacteria-derived cytokine-inducing substances (CIS). An in vitro dialysis circuit using polysulphone (PS) or modified cellulose triacetate (mCT) dialysers was used. Precoating of the dialysers was performed by recirculation of 10% normal human plasma for 30 min(More)
BACKGROUND The accumulation of advanced glycation end-products (AGEs) in end-stage renal disease (ESRD) influenced by dialysis modalities is of current interest. Highly permeable membranes in haemodialysis or haemofiltration should be able to eliminate circulating AGEs as well as their AGE precursors more efficiently. METHODS In our study, 10 non-diabetic(More)
Toxic effects of commercially available peritoneal dialysate (PD) fluid include damage to mesothelial cells (MC), causing a severely disturbed proliferation of cultured MC. We investigated the injury to the cell membrane (by release of lactate dehydrogenase, LDH), the proliferation (by cell counts and by 3H-thymidine incorporation), and optional the(More)
During continuous ambulatory peritoneal dialysis (CAPD), peritoneal host defence mechanisms are repeatedly exposed to dialysis solutions (with unphysiological composition) which may compromise peritoneal immune cell functions. In this context, the current study focused on the capacity of peripheral and peritoneal PMN to release leukotrienes following(More)
To investigate whether the glucose uptake (GU) of human peritoneal mesothelial cells (HPMC) is mediated by glucose transporters and whether this uptake is influenced by interleukin 1-beta (IL-1 beta), we measured 2-deoxy-(3H)-GU of HPMC in vitro, after exposing the cells for different times (two and 12 hours) to increasing concentrations (0.1, 1.0, and 2.0(More)