Learn More
We consider the question of thermalization for isolated quantum systems after a sudden parameter change, a so-called quantum quench. In particular, we investigate the prerequisites for thermalization, focusing on the statistical properties of the time-averaged density matrix and of the expectation values of observables in the final eigenstates. We find that(More)
We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is(More)
Lattice models forming bands with higher Chern number offer an intriguing possibility for new phases of matter with no analogue in continuum Landau levels. Here, we establish the existence of a number of new bulk insulating states at fractional filling in flat bands with a Chern number C = N > 1, forming in a recently proposed pyrochlore model with strong(More)
We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with(More)
We show that the spin-liquid phase of the half-filled Hubbard model on the triangular lattice can be described by a pure spin model. This is based on a high-order strong coupling expansion (up to order 12) using perturbative continuous unitary transformations. The resulting spin model is consistent with a transition from three-sublattice long-range magnetic(More)
Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We predict that the ν = 1/2 fractional Chern insulator arises naturally in a two-dimensional array of driven, dipolar-interacting spins. As a specific implementation, we analyze how to prepare and detect synthetic gauge potentials for the rotational excitations of(More)
We determine the dynamical dimer correlation functions of quantum dimer models at the Rokhsar-Kivelson point on the bipartite square and cubic lattices and the non-bipartite triangular lattice. Based on an algorithmic idea by Henley, we simulate a stochastic process of classical dimer configurations in continuous time and perform a stochastic analytical(More)
Motivated by the recent report of broken time-reversal symmetry and zero momentum magnetic scattering in underdoped cuprates, we investigate under which circumstances orbital currents circulating inside a unit cell might be stabilized in extended Hubbard models that explicitly include oxygen orbitals. Using Gutzwiller projected variational wave functions(More)
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Büchler et al. [Nature Phys. 3, 726 (2007)]. To this end, quantum Monte Carlo simulations, exact diagonalization, and a semiclassical approach are used to explore hard-core bosons on the 2D square lattice(More)
Combining a semiclassical analysis with exact diagonalizations, we show that the ground state of the SU(3) Heisenberg model on the square lattice develops three-sublattice long-range order. This surprising pattern for a bipartite lattice with only nearest-neighbor interactions is shown to be the consequence of a subtle quantum order-by-disorder mechanism.(More)