A. Laurence Gray

Learn More
The optical performance of quantum dot lasers with different dots-in-a-well (DWELL) structures is studied as a function of the well number and the indium composition in the InGaAs quantum well (QW) surrounding the dots. While keeping the InAs quantum dot density nearly constant, the internal quantum efficiency , modal gain, and characteristic temperature of(More)
Five ascending and four descending ERS-1/2 tandem-mode synthetic aperture radar (SAR) interferometry (InSAR) data pairs with useful scene coherence are used to measure the surface flow field of an alpine glacier in the Canadian Rocky Mountains. The topographic component of the interferogram phase is calculated by using a digital elevation model (DEM) of the(More)
We investigate the dynamical response of a quantum dot photonic integrated circuit formed with a combination of eleven passive and active gain cells operating when these cells are appropriately biased as a multi-section quantum dot passively mode-locked laser. When the absorber section is judiciously positioned in the laser cavity then fundamental frequency(More)
We measure, for the first time, the gain compression coefficient and above-threshold linewidth enhancement factor (alpha parameter) in quantum dot (QD) distributed feedback lasers (DFB) by time-resolved-chirp (TRC) characterization. The alpha parameter is measured to be 2.6 at threshold and increases to 8 when the output power of the QD DFB is increased to(More)
External optical feedback effects on quantum dot (QD) laterally loss-coupled (LLC) distributed feedback (DFB) lasers are reported for the first time in this letter. The critical external feedback ratio that causes coherence collapse of the QD DFB is measured to be 14 dB. No spectral broadening at this feedback level is observed within the 0.06-nm resolution(More)