Learn More
Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric(More)
We present the simulation, implementation, and measurement of a polarization insensitive broadband resonant terahertz metamaterial absorber. By stacking metal-insulator layers with differing structural dimensions, three closely positioned resonant peaks are merged into one broadband absorption spectrum. Greater than 60% absorption is obtained across a(More)
We have developed low-loss polymer artificial dielectric quarter wave plates (QWP) operating at 2.6, 3.2 and 3.8 THz. The QWPs are imprinted on high density polyethylene (HDPE) using silicon masters. The grating period for the quarter wave plates is 60 microm. 330 microm, 280 microm and 230 microm deep gratings are used to obtain a pi/2 phase retardance(More)
We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic(More)
We present a device and method for performing vector transmission spectroscopy on biological specimens at terahertz (THz) frequencies. The device consists of artificial dielectric birefringence obtained from silicon microfluidic grating structures. The device can measure the complex dielectric function of a liquid, across a wide THz band of 2 to 5.5 THz,(More)
We have fabricated terahertz wire grid polarizer and terahertz bandpass filter devices on high-density polyethylene substrates using simple photolithographic fabrication techniques. The performance of the fabricated devices was measured using a Fourier transform IR spectrometer. Both devices showed good performance in the terahertz frequency range up to 5(More)
—This work presents the implementation of planar Gunn diodes and pseudomorphic high electron mobility transistors (pHEMTs) on the same wafer for the first time. The AlGaAs/InGaAs/GaAs heterostructures were designed for the realisation of pHEMTs on a Gallium Arsenide-based wafer. T-gate technology has been used for the maximisation of the transistor(More)
We have designed and fabricated a dual-band resonator in the terahertz frequency range on high-resistivity silicon. The device is designed to show resonances at 2.6 and 4.3 THz using the finite-difference time-domain modeling method. The characteristics of the fabricated device have been examined by using a Fourier-transform IR spectrometer. Measured(More)
a r t i c l e i n f o We present a new chlorine-free dry etching process which was used to successfully etch indium antimonide grown on gallium arsenide substrates while keeping the substrate temperature below 150 °C. By use of a reflowed photoresist mask a sidewall with 60 degree positive slope was achieved, whereas a nearly vertical one was obtained when(More)