#### Filter Results:

#### Publication Year

1999

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- A. K. Rajagopal
- 1999

The form invariance of the statement of the maximum entropy principle and the metric structure in quantum density matrix theory, when generalized to nonextensive situations, is shown here to determine the structure of the nonextensive entropies. This limits the range of the nonextensivity parameter q to (,) 0 1 so as to preserve the concavity of the… (More)

We present a natural element method to treat higher-order spatial derivatives in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear partial differential equation that allows to model phase separation in binary mixtures. Standard classical C 0-continuous finite element solutions are not suitable because primal varia-tional… (More)

A self-consistent thermodynamic framework is presented for power-law canonical distributions based on the generalized central limit theorem by extending the discussion given by Khinchin for deriving Gibbsian canonical ensemble theory. The thermodynamic Legendre transform structure is invoked in establishing its connection to nonextensive statistical… (More)

Starting from microcanonical basis with the principle of equal a priori probability, it is found that, besides ordinary Boltzmann-Gibbs theory with the exponential distribution, a theory describing systems with power-law distributions can also be derived.

The Lévy-type distributions are derived using the principle of maximum Tsallis nonextensive entropy both in the full and half spaces. The rates of convergence to the exact Lévy stable distributions are determined by taking the N-fold convolutions of these distributions. The marked difference between the problems in the full and half spaces is elucidated… (More)

Given physical systems, counting rule for their statistical mechanical descriptions need not be unique, in general. It is shown that this nonuniqueness leads to the existence of various canonical ensemble theories, which equally arise from the definite microcanonical basis. Thus, the Gibbs theorem for canonical ensemble theory is not universal, and maximum… (More)

- A. K. Rajagopal
- 2000

Probability distributions defined on the half space are known to be quite different from those in the full space. Here, a nonextensive entropic treatment is presented for the half space in an analytic and self-consistent way. In this development, the ordinary first moment of the random variable X is divergent in contrast to the case of the full space. A… (More)

It is shown that the distribution derived from the principle of maximum Tsallis entropy is a superposable Lévy-stable distribution. Concomitantly, the leading order correction to the limit distribution is also deduced. This demonstration fills an important gap in the derivation of the Lévy-stable distribution from the nonextensive statistical framework.

- A. K. Rajagopal
- 1999

The problem of quantum state inference and the concept of quantum entanglement are studied using a non-additive measure in the form of Tsallis' entropy indexed by the positive parameter q. The maximum entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in detail for the Einstein-Podolsky-Rosen pair of two… (More)

The second law of thermodynamics in nonextensive statistical mechanics is discussed in the quantum regime. Making use of the convexity property of the generalized relative entropy associated with the Tsallis entropy indexed by q, Clausius' inequality is shown to hold in the range q in (0, 2]. This restriction on the range of the entropic index, q, is purely… (More)