Learn More
The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130)(More)
Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³⁸U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations,(More)
The ^{54}Fe nucleus was populated from a ^{56}Fe beam impinging on a Be target with an energy of E/A=500  MeV. The internal decay via γ-ray emission of the 10^{+} metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the(More)
Isomeric states in the semimagic 128–130 Sn isotopes were populated in the fragmentation of a 136 Xe beam on a 9 Be target at an energy of 750 A·MeV. The decay of an isomeric state in 128 Sn at an excitation energy of 4098 keV has been observed. Its half live has been determined to be T 1/2 = 220(30) ns from the time distributions of the delayed γ rays(More)
The β decay of 129 Cd, produced in the relativistic fission of a 238 U beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of 129 In was established comprising 31 excited states and 69 γ-ray transitions. The experimentally determined level energies are compared to(More)
We have studied the isotopes (82)Rb45, (83)Rb46, and (84)Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A = 80. Excited states in these nuclei were populated via the reaction (11)B + (76)Ge with E = 50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence(More)
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was(More)
The four proton-hole nucleus, 204 Pt, was populated in the fragmentation of an E/A = 1 GeV 208 Pb beam. The yrast structure of 204 Pt has been observed up to angular momentum I = 10 by detecting delayed γ-ray transitions originating from metastable states. These long-lived excited states have been identified to have spin-parities of I π = (10 +), (7 −) and(More)
Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and(More)