A. I. Kryshev

Learn More
Estimates of radiation dose rates are presented for marine biota in March-May 2011 in the coastal zone near Fukushima NPP, and in the open sea. Calculations of fish contamination were made using two methods: a concentration factor approach, and a dynamic model. For representative marine organisms (fish and molluscs) the radiation dose rates did not exceed(More)
Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals(More)
Empirical relations between the (90)Sr concentration factor (CF) and the calcium concentration in freshwater aquatic systems have previously been determined in studies based on data obtained prior to the Chernobyl accident. The purpose of the present research is to review and compare these models, and to test them against a database of post-Chernobyl(More)
A generic population model is formulated for radiation risk assessment of natural biota. The model demonstrates that effects of radiation on the population survival do not follow directly the effects on individual organisms. Dose rates resulting in population extinction can be analytically calculated. Besides individual radiosensitivity, two key parameters(More)
A dynamic model was developed for description of radiation effects in an isolated fish population chronically exposed at different dose rates. The induced effects were predicted based on damage created by the radiation, recovery by means of repair mechanisms, and natural growth of the population. Three types of radiation effects (umbrella endpoints) were(More)
A number of models have recently been, or are currently being, developed to enable the assessment of radiation doses from ionising radiation to non-human species. A key component of these models is the ability to predict whole-organism activity concentrations in a wide range of wildlife. In this paper, we compare the whole-organism activity concentrations(More)
Databases on effects of chronic low-LET radiation exposure were analyzed by non-parametric statistical methods, to estimate the threshold dose rates above which radiation effects can be expected in vertebrate organisms. Data were grouped under three umbrella endpoints: effects on morbidity, reproduction, and life shortening. The data sets were compiled on a(More)
Data collected for 10 years following the Chernobyl accident in 1986 have provided a unique opportunity to test the reliability of computer models for contamination of terrestrial and aquatic environments. The Iput River scenario was used by the Dose Reconstruction Working Group of the BIOMASS (Biosphere Modelling and Assessment Methods) programme. The test(More)
The Hanford test scenario described an accidental release of 131I to the environment from the Hanford Purex Chemical Separations Plant in September 1963. Based on monitoring data collected after the release, this scenario was used by the Dose Reconstruction Working Group of BIOMASS to test models typically used in dose reconstructions. The primary exposure(More)