A Hoogerkamp

Learn More
The threshold for convulsions in rats can be determined by applying ramp-shaped pulse trains directly to the cerebral cortex in rats, which provides a convenient model for investigating anticonvulsant drug effects. This study was undertaken to extend a previous study on the properties of this model. Analysis of the cortical EEG, recorded from two motor(More)
The purpose of this study was to assess the concentration-anti-convulsant effect relationships of a number of anti-convulsant drugs in the direct cortical stimulation model, to obtain more insight in the properties and predictive value of this model. The time course of the effect of lamotrigine, loreclezole, flunarizine, CGP40116 and CGP39551 was determined(More)
The in vivo concentration-anticonvulsant effect relationships of six benzodiazepines, midazolam, clonazepam, oxazepam, flunitrazepam, diazepam and clobazam were quantified in individual rats and correlated with the affinity to the GABAA-benzodiazepine receptor complex. Furthermore the interaction between midazolam and the benzodiazepine antagonist(More)
In this investigation a newly developed direct cortical stimulation technique was evaluated for measurement of anticonvulsant efficacy in rats. The kinetics of drug action for carbamazepine, phenytoin, valproate, phenobarbital, ethosuximide and oxazepam were studied in conjunction with their pharmacokinetics. Motor cortex stimulation with a ramp-shaped(More)
The aim of the present investigations was to study the influence of increasing age on the pharmacodynamics of valproate in BN/BiRij rats, applying a threshold for electrically induced localized seizure activity as a measure of the anticonvulsant effect. Seven groups of healthy male BN/BiRij rats were used, aged 3, 6, 12, 19, 25, 31, and 37 months.(More)
A new approach to preclinical pharmacodynamic investigations is presented which allows, in addition to information on the nature of the pharmacological properties of new chemical entities, also important quantitative pharmacodynamic information to be derived. A single intravenous dose is administered to chronically instrumented rats and the time course of(More)
1. The purpose of this investigation was to examine the influence of increasing age on the pharmacokinetics and the time course of the anticonvulsant response of oxazepam in BN/BiRij rats as an animal model of aging. 2. Oxazepam was administered intravenously in a dose of 12 mg kg-1 body weight and the anticonvulsant effect intensity was measured as(More)
  • 1