Learn More
As is typical of other hormone systems, the actions of the thyroid hormones (TH) differ from tissue to tissue depending upon a number of variables. In addition to varying expression levels of TH receptors and transporters, differing patterns of TH metabolism provide a critical mechanism whereby TH action can be individualized in cells depending on the needs(More)
Mitochondrial oxidative damage is implicated in brain aging and in age-related neurodegenerative diseases. Since N-acetylcysteine (NAC) has recently been shown to prevent apoptotic death in neuronal cells and protect synaptic mitochondria proteins from oxidative damage in aged mice, we have investigated whether dietary administration of this thiolic(More)
Since it has been proposed that oxidized protein accumulation plays a critical role in brain aging, we have investigated the effect of a thiolic antioxidant on protein carbonyl content in synaptic mitochondria from female OF-1 mice. At 48 weeks of age, a control group was fed standard food pellets and another group received pellets containing 0.3% (w/w) of(More)
Mice deficient in the thyroid hormone (TH) transporter Mct8 (Mct8KO) have increased 5'-deiodination and impaired TH secretion and excretion. These and other unknown mechanisms result in the low-serum T(4), high T(3), and low rT(3) levels characteristic of Mct8 defects. We investigated to what extent each of the 5'-deiodinases (D1, D2) contributes to the(More)
Maturation of the mammalian nervous system requires adequate provision of thyroid hormone and mechanisms that enhance tissue responses to the hormone. Here, we report that the development of cones, the photoreceptors for daylight and color vision, requires protection from thyroid hormone by type 3 deiodinase, a thyroid hormone-inactivating enzyme. Type 3(More)
The mouse Dio3 gene codes for the type 3 iodothyronine deiodinase (D3), a conserved selenocysteine-containing enzyme that inactivates thyroid hormones and is highly expressed during early development. The mouse Dio3 gene and its human homolog map to chromosomal regions that are known to contain imprinted genes. We assessed the allelic expression of the Dio3(More)
Thyroid hormone is necessary for cochlear development and auditory function, but the factors that control these processes are poorly understood. Previous evidence indicated that in mice, the serum supply of thyroid hormone is augmented within the cochlea itself by type 2 deiodinase, which amplifies the level of T(3), the active form of thyroid hormone,(More)
The human DIO3 gene and its mouse homolog, Dio3, map to chromosomes 14q32 and 12F1, respectively, and code for the type 3 deiodinase, an enzyme that inactivates thyroid hormones and is highly expressed during pregnancy and development. Mouse Dio3 is imprinted and preferentially expressed from the paternal allele in the fetus. We analyzed the human DIO3(More)
Mice deficient in thyroid hormone receptor α (TRα) display hypersensitivity to thyroid hormone (TH), with normal serum TSH but diminished serum T(4). Our aim was to determine whether altered TH metabolism played a role in this hypersensitivity. TRα knockout (KO) mice have lower levels of rT(3), and lower rT(3)/T(4) ratios compared with wild-type (WT) mice.(More)
The functioning of the genome is tightly related to its architecture. Therefore, understanding the relationship between different regulatory mechanisms and the organization of chromosomal domains is essential for understanding genome regulation. The majority of imprinted genes are assembled into clusters, share common regulatory elements, and, hence,(More)