Learn More
Mitochondrial dysfunction and perturbed degradation of proteins have been implicated in Parkinson's disease (PD) pathogenesis. Mutations in the Parkin and PINK1 genes are a cause of familial PD. PINK1 is a putative kinase associated with mitochondria, and loss of PINK1 expression leads to mitochondrial dysfunction, which increases with time. Parkin is(More)
OBJECTIVE Mutations in the glucocerebrosidase gene (GBA) represent a significant risk factor for developing Parkinson disease (PD). We investigated the enzymatic activity of glucocerebrosidase (GCase) in PD brains carrying heterozygote GBA mutations (PD+GBA) and sporadic PD brains. METHODS GCase activity was measured using a fluorescent assay in(More)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is thought to produce parkinsonism in humans and other primates through its inhibition of complex I. The recent discovery of mitochondrial complex I deficiency in the substantia nigra of patients with Parkinson's disease has provided a remarkable link between the idiopathic disease and the action of the(More)
Parkinson's disease is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Here we discuss a series of critical issues that we think researchers need to address to stand a better chance of solving the different challenges posed by this pathology.
The loss of dopaminergic neurons in the substantia nigra pars compacta leads to the characteristic motor symptoms of Parkinson's disease: bradykinesia, rigidity and resting tremors. Although these symptoms can be improved using currently available dopamine replacement strategies, there is still a need to improve current strategies of treating these(More)
Defects of mitochondrial metabolism cause a wide range of human diseases that include examples from all medical subspecialties. This review updates the topic of mitochondrial diseases by reviewing the most important recent advances in this area. The factors influencing inheritance, maintenance and replication of mtDNA are reviewed and the genotype-phenotype(More)
BACKGROUND Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Impairment of the mitochondrial electron transport chain (ETC) and an increased frequency in deletions of mitochondrial DNA (mtDNA), which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The(More)
Alpha synuclein can be phosphorylated at serine129 (P-S129), and the presence of highly phosphorylated alpha-synuclein in Lewy bodies suggests changes to its phosphorylation status has an important pathological role. We demonstrate that the kinase(s) responsible for alpha-synuclein S129 phosphorylation is constitutively active in SH-SY5Y cells and involves(More)
A major barrier to research on Parkinson's disease is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells from patients and differentiate them into neurons affected by disease. Triplication of SNCA, encoding α-synuclein, causes a fully penetrant, aggressive form of Parkinson's disease with dementia.(More)
BACKGROUND In advanced Parkinson disease (PD), immediate-release pramipexole, taken 3 times daily, improves symptoms and quality of life. A once-daily extended-release formulation may be an effective and simple alternative therapy. METHODS For a multicenter randomized, double-blind, parallel trial of extended- and immediate-release pramipexole vs placebo,(More)