Learn More
Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics,(More)
Nanomedicine is an emerging field that utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline merges research areas such as chemistry, biology, physics, mathematics and engineering. It therefore bridges the gap between molecular and cellular interactions, and has the potential to revolutionize medicine. This review(More)
The purpose of this study is to demonstrate the long-term, controlled, zero-order release of low- and high-molecular weight chemotherapeutics through nanochannel membranes by exploiting the molecule-to-surface interactions presented by nanoconfinement. Silicon membranes were produced with nanochannels of 5, 13 and 20 nm using standardized industrial(More)
Drug delivery is essential to achieve effective therapy. Herein we report on the only implantable nanochannel membrane with geometrically defined channels as small as 2.5 nm that achieves constant drug delivery in vivo. Nanochannels passively control the release of molecules by physico-electrostatic confinement, thereby leading to constant drug diffusion.(More)
Combined use of gemcitabine (Gem) and LY-364947 (LY), a TGF-β1 receptor inhibitor, has shown promise for the treatment of fibrotic pancreatic cancer, by reducing collagen production and improving tumor drug penetration. The preparation and optimization of novel Gem and LY formulations, including co-encapsulation in liposomes, require a validated method for(More)
Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable(More)
Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of(More)
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of(More)
The lack of a viable theory for describing diffusivity when fluids are confined at the micro- and nanoscale [Ladero et al. Chem. Eng. Sci.2007, 62, 666-678; Deen AIChE J.1987, 33, 1409-1425] has necessitated accurate measurement of diffusivity (D) [Jin and Chen Chromatographia2000, 52, 17-21; Nie et al. Science1994, 266, 1018-1021; Durand et al. Anal.(More)
Nanoparticles and their derivatives have engendered significant recent interest. Despite considerable advances in nanofluidic physics, control over nanoparticle diffusive transport, requisite for a host of innovative applications, has yet to be demonstrated. In this study, we performed diffusion experiments for negatively and positively charged fullerene(More)