Learn More
Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in(More)
Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The(More)
Capacitance has been used as a non-destructive measure of root system size for 30 years. The equipment required is cheap and simple to apply in both field and laboratory. Good linear correlations have been reported between capacitance and root mass. A model by F. N. Dalton, predicting a linear relationship between these two variables, has become accepted(More)
Root distribution determines largely the zone of soil that roots have access to for water and nutrient uptake, and is of great importance especially if water and fertilizer input is restricted. Mechanical impedance is the major limitation to root elongation in many field soils. Until now, experiments have focused largely on the axial resistance to root(More)
Biomechanical properties of cereal root systems largely control both resistance to root lodging and their ability to stabilise soil. Abiotic stresses can greatly modify root system growth and form. In this paper the effect of waterlogging and moderate mechanical impedance on root biomechanics is studied for both lateral roots and the main axes of barley.(More)
Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil Summary • Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. • The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer(More)
Motion estimation from confocal scanning laser microscope images of growing plant cell structures presents interesting challenges; motion exhibits multiple local discon-tinuities and noise is non-isotropic and non-Gaussian. A method is presented for estimating motion of cell networks based on a physically motivated, part-based model of cell boundary(More)
Images of cellular structures in growing plant roots acquired using confocal laser scanning microscopy (CLSM) have some unusual properties that make motion estimation challenging. These include multiple motions , non-Gaussian noise and large regions with little spatial structure. In this paper, a method for motion estimation is described that uses a robust(More)
The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact(More)
The performance of various low-level motion estimation methods applied to fluorescence labelled growing cellular structures imaged using confocal laser scanning microscopy is investigated. This is a challenging and unusual domain for motion estimation methods. A selection of methods are discussed that can be contrasted in terms of how much spatial or(More)