Learn More
By coupling a probe transition to a Rydberg state using electromagnetically induced transparency (EIT) we map the strong dipole-dipole interactions onto an optical field. We characterize the resulting cooperative optical nonlinearity as a function of probe strength and density. We demonstrate good quantitative agreement between the experiment and an N-atom(More)
We have developed an atom interferometer providing a full inertial base. This device uses two counterpropagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and(More)
We use a microwave field to control the quantum state of optical photons stored in a cold atomic cloud. The photons are stored in highly excited collective states (Rydberg polaritons) enabling both fast qubit rotations and control of photon-photon interactions. Through the collective read-out of these pseudospin rotations it is shown that the microwave(More)
In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4 Planck's constant k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the(More)
We present a magnetic trap for cold atoms near a surface of a millimeter-sized atom chip. The trap allows us to capture a large number of atoms with modest electrical currents (40 A) and to generate large magnetic gradients (>300 G cm-1). Here we report a mixture containing 6 × 109 atoms for the two rubidium isotopes 87Rb and 85Rb. This device does not(More)
We report an experimental test of the topological phase predicted by He and McKellar in 1993 and by Wilkens in 1994: this phase, which appears when an electric dipole propagates in a magnetic field, is connected to the Aharonov-Casher effect by electric-magnetic duality. The He-McKellar-Wilkens phase is quite small, at most 27 mrad in our experiment, and(More)
We have developed and characterized a heat pipe for lithium spectroscopy, which is cooled only by air-convection, although its operating temperature is 330 °C: its construction is simple, of moderate cost and it is very reliable. A thermal model proves that heat-pipes without water cooling can be used up to considerably higher temperatures.
In this Letter, we report a measurement of the He-McKellar-Wilkens (HMW) topological phase by atom interferometry. The experiment is done with our lithium atom interferometer, and in order to suppress the stray effects present in our first experiment, we use optical pumping of the (7)Li atoms in their F=2, m(F)=+2 (or -2) ground state sublevel. In these(More)
A phase modulation puts the atom in a coherent superposition of quantum states with different kinetic energies. We have detected the interference of such modulated waves at the output of our atom interferometer, and we have observed beats at the difference of the modulation frequencies and its harmonics, in good agreement with theory. The phase modulations(More)
In this paper, we describe an experiment performed at the Laboratoire de Physique des Lasers and dedicated to an optical measurement of the Boltzmann constant . With the proposed innovative technique, determining comes down to an ordinary frequency measurement. The method consists in measuring as accurately as possible the Doppler absorption profile of a(More)
  • 1