Learn More
We study the dynamics of an array of single mode semiconductor lasers globally but weakly coupled by a common external feedback mirror and by nearest neighbor interactions. We seek to determine the conditions under which all lasers of the array are in phase, whether in a steady, periodic, quasiperiodic, or chaotic regime, in order to maximize the output far(More)
We perform bifurcation analysis of plane wave solutions in a one-dimensional complex cubic-quintic Ginzburg–Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical(More)
Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area(More)
We study the interaction of well-separated oscillating localized structures (oscillons). We show that oscillons emit weakly decaying dispersive waves, which lead to the formation of bound states due to harmonic synchronization. We also show that in optical applications the Andronov-Hopf bifurcation of stationary localized structures leads to a drastic(More)
We consider a passive optical cavity containing a photonic crystal and a purely absorptive two-level medium. The cavity is driven by a superposition of two coherent beams forming a periodically modulated pump. Using a coupled mode reduction and direct numerical modeling of the full system we demonstrate the existence of bistability between uniformly(More)
We investigate a control of the motion of localized structures (LSs) of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary LS that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally(More)
Stripe-array diode lasers naturally operate in an anti-phase supermode. This produces a sharp double lobe far field at angles +/-alpha depending on the period of the array. In this paper a 40 emitter gain guided stripe-array laterally coupled by off-axis filtered feedback is investigated experimentally and numerically. We predict theoretically and confirm(More)
We study analytically the (N-1)-fold degenerate Hopf bifurcation at which N stationary modes with identical parameters become unstable in a model of a solid-state laser with intracavity second harmonic generation. We use the normal form method and exploit the symmetries of the problem. Up to N=3, stable periodic antiphased solutions emerge from the Hopf(More)
Nonlinear polaritons in microcavity wires are demonstrated to exhibit multi-stable behavior and rich dynamics, including filamentation and soliton formation. We find that the multi-stability originates from co-existence of different transverse cavity modes. Modulational stability and conditions for multi-mode polariton solitons are studied. Soliton(More)