A G Devenyi

Learn More
The metals iron (Fe) and manganese (Mn) are essential for normal functioning of the brain. This review focuses on recent developments in the literature pertaining to Fe and Mn transport. These metals are treated together because they appear to share several transport mechanisms. In addition, several neurological diseases such as Alzheimer's Disease,(More)
Hypotransferrinemia (hpx/hpx) is a genetic defect in mice resulting in <1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. These mice provide a unique opportunity to examine the role of Tf in Fe and Mn transport in the brain. Twenty weanling wild-type BALB/cJ mice, 15 +/hpx(More)
Transferrin (Tf) is accepted as the iron mobilization protein, but its role in transport of other metals is controversial. In this study, we used mixed glial cultures from hypotransferrinemic (Hp) mice to determine the dependence of these cells on transferrin for iron and manganese delivery and release. Hp mice have a splicing defect in the transferrin (Tf)(More)
Hyperintense symmetric pallidal lesions have been described in chronic hepatic failure. Similar lesions are reported in experimental models of manganese neurotoxicity. We describe an 8-year-old girl with chronic hepatic failure and dystonia in association with an elevated whole blood manganese level and symmetric hyperintense pallidal lesions on magnetic(More)
The hyperintense signal in the globus pallidus of cirrhotic patients on T1-weighted magnetic resonance (MR) imaging has been postulated to arise from deposition of paramagnetic manganese2+ (Mn). Intestinal absorption of both iron and Mn are increased in iron deficiency; iron deficiency may therefore increase susceptibility to Mn neurotoxicity. To(More)
  • Citation Gao, Baile Hanhong, Steven G Zhang, George Barbastathis Johnson, Hanhong Gao, Baile Zhang +70 others
  • 2012
Design of thin–film photonic metamaterial Lüneburg lens using analytical approach. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story(More)
We propose a two dimensional (2D) photonic crystal (PhC) structure that supports super-collimation over a large frequency range (over 4 times that of a traditional square lattice of holes). We theoretically and numerically investigate the collimation mechanism in our 2D structure, in comparison to that of two other frequently used related PhC structures. We(More)
  • 1