Learn More
Anne Chao, Robin L. Chazdon, Robert K. Colwell and Tsung-Jen Shen Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA *Correspondence: E-mail: chazdon@uconn.edu Abstract The classic Jaccard and Sørensen indices of compositional similarity (and(More)
Aims In ecology and conservation biology, the number of species counted in a biodiversity study is a key metric but is usually a biased underestimate of total species richness because many rare species are not detected. Moreover, comparing species richness among sites or samples is a statistical challenge because the observed number of species is sensitive(More)
We propose an integrated sampling, rarefaction, and extrapolation methodology to compare species richness of a set of communities based on samples of equal completeness (as measured by sample coverage) instead of equal size. Traditional rarefaction or extrapolation to equal-sized samples can misrepresent the relationships between the richnesses of the(More)
A biological community usually has a large number of species with relatively small abundances. When a random sample of individuals is selected and each individual is classified according to species identity, some rare species may not be discovered. This paper is concerned with the estimation of Shannon’s index of diversity when the number of species and the(More)
Quantifying and assessing changes in biological diversity are central aspects of many ecological studies, yet accurate methods of estimating biological diversity from sampling data have been elusive. Hill numbers, or the effective number of species, are increasingly used to characterize the taxonomic, phylogenetic, or functional diversity of an assemblage.(More)
In statistical ecology, the number of shared species is a standard measure of similarity between two communities. Assume that a multinomial sample is drawn from each of the two target communities. Each observation (individual) in the sample is classified to species identity, and the frequency for each observed species is recorded. This paper uses the(More)
Biodiversity sampling is labor intensive, and a substantial fraction of a biota is often represented by species of very low abundance, which typically remain undetected by biodiversity surveys. Statistical methods are widely used to estimate the asymptotic number of species present, including species not yet detected. Additional sampling is required to(More)
We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on 'effective number of species' or Hill numbers) to take into account species relatedness, and also generalizes the(More)
A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic(More)