A. G. Balanov

Learn More
We investigate feedback control of the cooperative dynamics of two coupled neural oscillators that is induced merely by external noise. The interacting neurons are modeled as FitzHugh-Nagumo systems with parameter values at which no autonomous oscillations occur, and each unit is forced by its own source of random fluctuations. Application of delayed(More)
Time-delayed feedback is exploited for controlling noise-induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength.(More)
We study the effect of a time-delayed feedback upon a Van der Pol oscillator under the influence of white noise in the regime below the Hopf bifurcation where the deterministic system has a stable fixed point. We show that both the coherence and the frequency of the noise-induced oscillations can be controlled by varying the delay time and the strength of(More)
We study the effect of time delayed feedback control in the form proposed by Pyragas on deterministic chaos in the Rössler system. We reveal the general bifurcation diagram in the parameter plane of time delay tau and feedback strength K which allows one to explain the phenomena that have been discovered in some previous works. We show that the bifurcation(More)
Cardiorespiratory synchronization under paced respiration is studied systematically as the respiration frequency is changed between 3 and 30 breaths per min. We plot a one-dimensional cut of the classical picture of synchronization regions along the line defining the current breathing amplitude. The existence of n:m synchronization regions of finite width(More)
The recently proposed approach to detect synchronization from univariate data is applied to heart-rate-variability (HRV) data from ten healthy humans. The approach involves introducing angles for return times map and studying their behavior. For filtered human HRV data, it is demonstrated that: (i) in many of the subjects studied, interactions between(More)
We investigate the influence of noise upon the dynamics of the current density distribution in a model of a semiconductor nanostructure, namely, a double barrier resonant tunneling diode. We fix the parameters of the device below the Hopf bifurcation, where the only stable state of the system is a spatially inhomogeneous "filamentary" steady state. We show(More)
(2011) Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure. computation and stochastic amplification in a neuron-like semiconductor microstructure. computation and stochastic amplification in a neuron-like semiconductor microstructure. This version is made available in accordance with publisher policies. Please(More)
We show that characteristic features of noise-induced spatiotemporal patterns in excitable media can be effectively controlled by applying delayed feedback. Actually, by variation of the time delay and of the strength of the feedback one can deliberately change both spatial and temporal coherence, as well as adjust the characteristic time scales.