Learn More
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years,(More)
BACKGROUND In rat kidney medullary thick ascending limb of Henle's loop (MTAL), activation of protein kinase A (PKA) was previously reported to inhibit Na+,K(+)-ATPase activity. This is paradoxical with the known stimulatory effect of cAMP on sodium reabsorption. Because this inhibition was mediated by phospholipase A2 (PLA2) activation, a pathway(More)
Through the activity of macrophage-specific matrix metalloproteinase-12 (MMP-12), we found that macrophages dampen the lipopolysaccharide (LPS)-induced influx of polymorphonuclear leukocytes (PMNs)-thus providing a new mechanism for the termination of PMN recruitment in acute inflammation. MMP-12 specifically cleaves human ELR(+) CXC chemokines (CXCL1, -2,(More)
AIMS/HYPOTHESIS C-peptide, the cleavage product of proinsulin processing exerts physiological effects including stimulation of Na(+),K(+)-ATPase in erythrocytes and renal proximal tubules. This study was undertaken to assess the physiological effects of connecting peptide on Na(+),K(+)-ATPase activity in the medullary thick ascending limb of Henle's loop.(More)
Edema and ascites in nephrotic syndrome mainly result from increased Na+ reabsorption along connecting tubules and cortical collecting ducts (CCD). In puromycin aminonucleoside (PAN)-induced nephrosis, increased Na+ reabsorption is associated with increased activity of the epithelial sodium channel (ENaC) and Na+,K+-ATPase, two targets of aldosterone.(More)
Pseudohypoaldosteronism type II is a salt-sensitive form of hypertension with hyperkalemia in humans caused by mutations in the with-no-lysine kinase 4 (WNK4). Several studies have shown that WNK4 modulates the activity of the renal Na(+)Cl(-) cotransporter, NCC. Because the renal consequences of WNK4 carrying pseudoaldosteronism type II mutations resemble(More)
To gain a molecular understanding of kidney functions, we established a high-resolution map of gene expression patterns in the human kidney. The glomerulus and seven different nephron segments were isolated by microdissection from fresh tissue specimens, and their transcriptome was characterized by using the serial analysis of gene expression (SAGE) method.(More)
A micromethod for the determination of Na-K-ATPase in discrete segments of nephrons from rabbit, rat, and mouse kidneys is described. To facilitate tubule microdissection, the kidneys were perfused with collagenase after it had been verified that collagenase had no effect on ATPase activity. Individual tubule segments were dissected under stereomicroscopic(More)
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for(More)
In the mammalian kidney the fine control of Na+ reabsorption takes place in collecting duct principal cells where basolateral Na,K-ATPase provides the driving force for vectorial Na+ transport. In the cortical collecting duct (CCD), a rise in intracellular Na+ concentration ([Na+]i) was shown to increase Na,K-ATPase activity and the number of ouabain(More)