A. Dianat

Learn More
A recent scanning tunneling microscopy study by Mitsui et al. [Nature (London) 422, 705 (2003)] challenged the well-accepted picture based on early studies of Langmuir that an ensemble of at least two empty, catalytically active sites is required for the dissociative adsorption; instead, aggregates of three or more vacancies should be necessary. We have(More)
The growth of single and multilayer graphene nanoflakes on MgO and ZrO 2 at low temperatures is shown through transmission electron microscopy. The graphene nanoflakes are ubiquitously anchored at step edges on MgO ͑100͒ surfaces. Density functional theory investigations on MgO ͑100͒ indicate C 2 H 2 decomposition and carbon adsorption at step-edges. Hence,(More)
ZnO in its many forms, such as bulk, thin films, nanorods, nanobelts, and quantum dots, attracts significant attention because of its exciting optical, electronic, and magnetic properties. For very thin ZnO films, predictions were made that the bulk wurtzite ZnO structure would transit to a layered graphene-like structure. Graphene-like ZnO layers were(More)
Recent experimental advances for the fabrication of various borophene sheets introduced new structures with a wide range of applications. Borophene is the boron atom analogue of graphene. Borophene exhibits various structural polymorphs all of which are metallic. In this work, we employed first-principles density functional theory calculations to(More)
Polygonal supramolecular architectures of a Pt(ii) complex including trimers, tetramers, pentamers and hexamers were self-assembled via hydrogen bonding between isocytosine moieties; their structure at the solid/liquid interface was unravelled by in situ scanning tunneling microscopy imaging. Density functional theory calculations provided in-depth insight(More)
Here we present electrochemically grown ultrathin 12 platinum nanowires and demonstrate that their morphology and 13 crystalline structure can be tuned by the waveform of the 14 alternating voltage applied to the microelectrodes. The structure 15 of the nanowires was analyzed by scanning and transmission 16 electron microscopy. The voltage signal, applied(More)
The mechanical properties of graphene nanoribbons on Ni(111) surfaces with different contact sizes are investigated by means of density functional theory. For finite contact sizes, the stress behavior of graphene nanoribbons on metal electrodes is likely to be similar to that of suspended graphene, however the critical strain is not reached due to the(More)
A joint experimental and computational study is reported on the concentration-dependant self-assembly of a flat C3 -symmetric molecule on a graphite surface. As a model system a tripodal molecule, 1,3,5-tris(pyridin-3-ylethynyl)benzene, has been chosen, which can adopt either C3h or Cs symmetry when planar, as a result of pyridyl rotation along the alkynyl(More)
The segregation behavior of the bimetallic alloys PtPd and CoCr in the case of bare surfaces and in the presence of an oxygen ad-layer has been studied by means of first-principles modeling based on density-functional theory (DFT). For both systems, change of the d-band filling due to charge transfer between the alloy components, resulting in a shift of the(More)