A. David Purdon

Learn More
Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in(More)
To ascertain effects of total ischemia on brain phospholipid metabolism, anesthetized rats were decapitated and unesterified fatty acids and long chain acyl-CoA concentrations were analyzed in brain after 3 or 15 min. Control brain was taken from rats that were microwaved. Fatty acids were quantitated by extraction, thin layer chromatography and gas(More)
Using a method and model developed in our laboratory to quantitatively study brain phospholipid metabolism, in vivo rates of incorporation and turnover of docosahexaenoic acid in brain phospholipids were measured in awake rats. The results suggest that docosahexaenoate incorporation and turnover in brain phospholipids are more rapid than previously assumed(More)
Long-chain acyl-CoA's are important intermediates in fatty acid oxidation and phospholipid metabolism. For quantitative analysis of brain acyl-CoA's, and to avoid decomposition due to high brain acyl-CoA hydrolase activity, a fast and efficient analytical method was developed for isolation and determination of acyl-CoA's. The analysis includes solid-phase(More)
Until recently, brain phospholipid metabolism was thought to consume only 2% of the ATP consumed by the mammalian brain as a whole. In this paper, however, we calculate that 1.4% of total brain ATP consumption is consumed for the de novo synthesis of ether phospholipids and that another 5% is allocated to the phosphatidylinositide cycle. When added to(More)
Transient global cerebral ischemia affects phospholipid metabolism and features a considerable increase in unesterified fatty acids. Reincorporation of free fatty acids into membrane phospholipids during reperfusion following transient ischemia depends on conversion of fatty acids to acyl-CoAs via acyl-CoA synthetases and incorporation of the acyl group(More)
In vivo rates of arachidonic acid incorporation and turnover were determined for molecular species of rat brain phosphatidylcholine (PtdCho) and phosphatidylinositol (PtdIns). [3H]Arachidonic acid was infused intravenously in pentobarbital-anesthetized rats at a programmed rate to maintain constant plasma specific activity for 2-10 min. At the end of(More)
We have recently demonstrated that human high molecular weight kininogen (HMWK) is a pro-cofactor that is cleaved by kallikrein to yield a two-chain cofactor (HMWKa) and the nanopeptide bradykinin. This proteolysis enhances its association with an activating surface, an event necessary for expression of its cofactor activity. We now report that factor XIa(More)
In vivo rates of palmitate incorporation into brain phospholipids were measured in awake rats following programmed intravenous infusion of unesterified [9,10-3H]palmitate to maintain constant plasma specific activity. Animals were killed after 2-10 min of infusion by microwave irradiation and analyzed for tracer distribution in brain phospholipid and(More)
High mol wt kininogen (HMWK), the major cofactor-substrate of the contact phase of coagulation, is contained within and secreted by platelets. Studies have been performed to localize platelet HMWK in both the unstimulated and activated platelet and to ascertain the effect of platelet enzymes on HMWK itself. On platelet subcellular fractionation, platelet(More)