A. D. Mirzabekov

Learn More
Although gel-based microchips offer significant advantages over two-dimensional arrays, their use has been impeded by the lack of an efficient manufacturing procedure. Here we describe two simple, fast, and reproducible methods of fabrication of DNA gel drop microchips. In the first, copolymerization method, unsaturated groups are chemically attached to(More)
Here a simple, reproducible, and versatile method is described for manufacturing protein and ligand chips. The photo-induced copolymerization of acrylamide-based gel monomers with different probes (oligonucleotides, DNA, proteins, and low-molecular ligands) modified by the introduction of methacrylic groups takes place in drops on a glass or silicone(More)
The utility of parallel hybridization of environmental nucleic acids to many oligonucleotides immobilized in a matrix of polyacrylamide gel pads on a glass slide (oligonucleotide microchip) was evaluated. Oligonucleotides complementary to small-subunit rRNA sequences of selected microbial groups, encompassing key genera of nitrifying bacteria, were shown to(More)
The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes(More)
Activity measurements by radioisotopic methods and cultural and molecular approaches were used in parallel to investigate the microbial biodiversity and its physiological potential in formation waters of the Samotlor high-temperature oil reservoir (Western Siberia, Russia). Sulfate reduction with rates not exceeding 20 nmol of H(2)S liter(-1) day(-1)(More)
Different proteins such as antibodies, antigens, and enzymes were immobilized within the 100 x 100 x 20-microm gel pads of protein microchips. A modified polyacrylamide gel has been developed to accommodate proteins of a size up to 400,000 daltons. Electrophoresis in the microchip reaction chamber speeded up antigen-antibody interactions within the gel.(More)
Three new molecular approaches were developed to identify drug-resistant strains of Mycobacterium tuberculosis using biochips with oligonucleotides immobilized in polyacrylamide gel pads. These approaches are significantly faster than traditional bacteriological methods. All three approaches-hybridization, PCR, and ligase detection reaction--were designed(More)
p50 protein is a member of the Y-box binding transcription factor family and is a counterpart of YB-1 protein. The generic microchip was used to analyze the sequence specificity of p50 binding to single (ss) and double-stranded (ds) oligodeoxyribonucleotides. The generic microchip contained 4,096 single-stranded octadeoxyribonucleotides in which all(More)
Chemical ligation was used to obtain a series of modified DNA duplexes containing a substituted pyrophosphate internucleotide bound in a given site of the sugar-phosphate backbone. The efficiency of chemical ligation was shown to depend on the structure of the synthesis center for the modified internucleotide bond, thermosiability of the initial DNA(More)
We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient(More)