Learn More
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2)(More)
Regulation of AMPA receptors (AMPARs) at synapses plays a critical role in alterations of synaptic strength in the brain. Stargazin, an AMPAR-interacting protein, is critical for clustering and regulation of synaptic AMPARs. Stargazin interacts with AMPARs via its extracellular domain and with PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona(More)
Epidemiological evidence points to prenatal viral infection being responsible for some forms of schizophrenia and autism. We hypothesized that prenatal human influenza viral infection in day 9 pregnant mice may cause changes in the levels of neuronal nitric oxide synthase (nNOS), an important molecule involved in synaptogenesis and excitotoxicity, in(More)
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These(More)
(Pro)renin receptor (PRR), the newest member of the renin-angiotensin system (RAS), is turning out to be an important player in the regulation of the cardiovascular system. It plays a pivotal role in activation of the local RAS and stimulates signalling pathways involved in proliferative and hypertrophic mechanisms. However, the role of PRR in the brain(More)
Bursts of action potentials are crucial for neuropeptide release from the hypothalamic neurohypophysial system (HNS). The biophysical properties of the ion channels involved in the release of these neuropeptides, however, cannot explain the efficacy of such bursting patterns on secretion. We have previously shown that ATP, acting via P2X receptors,(More)
The centrally mediated cardiovascular regulatory actions of angiotensin II in normal and hypertensive rats include angiotensin II type 1 receptor (AT1R)-mediated actions at the paraventricular nucleus (PVN) of the hypothalamus. Because the PVN consists of multiple neuronal populations, it is important to understand which neuronal types in the PVN are(More)
ATP-induced ionic currents were investigated in isolated terminals and somata of the hypothalamic neurohypophysial system (HNS). Both terminals and somata showed inward rectification of the ATP-induced currents and reversal near 0 mV. In terminals, ATP dose-dependently evoked an inactivating, inward current. However, in hypothalamic somata, ATP evoked a(More)
Previous studies have indicated that hyperactivity of brain prorenin receptors (PRR) is implicated in neurogenic hypertension. However, the role of brain PRR in regulating arterial blood pressure (ABP) is not well understood. Here, we test the hypothesis that PRR activation in the hypothalamic paraventricular nucleus (PVN) contributes to increased(More)
Arginine-vasopressin (AVP) plays a major role in maintaining cardiovascular function and related pathologies. The mechanism involved in its release into the circulation is complex and highly regulated. Recent work has implicated the purinergic receptor, P2X7R, in a role for catecholamine-enhanced AVP release in the rat hypothalamic-neurohypophysial (NH)(More)