A Carrera San Martín

  • Citations Per Year
Learn More
The mechanoelastic features of five types of sutures were studied. The breaking stress for each was determined by means of tensile tests in which a constant strain rate was applied, and a tensile test with graduated stress and relaxation defined the elastic limit, i.e. the point beyond which deformation becomes irreversible. The study of the stress-strain(More)
The mechanical behavior of calf pericardium employed in the manufacture of cardiac bioprostheses was assessed according to the region from which it was selected. For this purpose, selected samples of the tissue were sewn with different types of commercially available sutures and subjected to tensile testing, the results of which were compared with the(More)
Poor mechanical properties of biological tissue are known to cause wear, leading to the failure of cardiac bioprostheses made of calf pericardium. Different chemical agents such as sodium dodecyl sulfate (SDS) are presently being tested as possible inhibitors of the calcification process. The objective of this report was to determine the mechanical behavior(More)
The purpose of this study was to assess the elastic behaviour of calf pericardium used in the construction of cardiac bioprosthesis valve leaflets, sutured with different types of commercially available sutures: silk, Gore-Tex, Surgilene and nylon. Thirty-two samples (four series of eight samples each) were subjected to tensile strength testing to breakage.(More)
A material subjected to traction stress increases in length; if we maintain the elongation constant, the stress varies over a period of time. This phenomenon has been referred to as relaxation. The purpose of this study was to define a mathematical law that relates the variation in stress to time when elongation remains constant in bovine pericardium. The(More)
Assessment of relaxation (loss of load within a given time) without apparent deformation is a necessary step before durability assay of biomaterials. From results obtained using calf pericardium, the following conclusions were drawn: (a) there is no limit to relaxation for this biomaterials; (b) the lesser the load applied, the greater the relaxation; and(More)
The limited durability of the valve bioprostheses made from calf pericardium is partially due to the calcification of this biomaterial and to mechanical fatigue of the tissue. The object of this study is to determine the harmful effect on the pericardial membrane of cutting caused by the suture thread by showing the different elastic behaviors of the(More)
The objective of the study was to determine the shearing stress exerted by the suture thread under conditions of normal working stress. Thirty-six samples of calf pericardium, similar to that employed in the manufacture of bioprosthetic cardiac valve leaflets, were subjected to tensile testing. Prior to the trial, a continuous suture was sewn in the central(More)
Our study of the different biomaterials used in the construction of biological cardiac prostheses has shown it to be of vital importance that the physical properties of the tissue and of the suture that anchors it to the rigid polymeric support are compatible. By means of dynamic tests, we have determined the fatigue curve in sutured bovine pericardial(More)
The behaviour of bovine pericardium was studied using a fatigue assay. Twenty-three samples were assayed, maintaining the preset initial stress and measuring the time it took for the onset of load loss due to permanent deformation. The results indicated a mathematical relationship defined by the expression: log y = 1.3 - 0.211 log t, where y is the fatigue(More)
  • 1