A Campos Torres

Learn More
Following unilateral inner ear lesion, astrocytes undergo hypertrophy in the deafferented vestibular and cochlear nuclei as shown by an increase in the level of glial fibrillary acid. The present study extends our understanding of vestibular and cochlear system plasticity by examining microglial changes in these deafferented nuclei. The microglial reaction(More)
The present investigation was designed to determine the effect of lesions localized to the nucleus basalis/substantia innominata (NB) on resting and cholinergically activated regional cerebral cortical blood flow (rCBF). Ibotenic acid (10 micrograms) was infused locally at 1 mm caudal to bregma, 3 mm lateral to the midline, and 8 mm below the cortical(More)
We investigated whether unilateral removal of the labyrinthine and cochlear receptors induces a macroglial reaction in rat vestibular and cochlear nuclei using vimentin and glial fibrillary acidic protein (GFAP) immunochemical markers. Antibody binding was visualized using the avidin-biotin method and 3,3'-diaminobenzidine as the peroxidase substrate. In(More)
We investigated whether a unilateral inner ear lesion that destroyed the labyrinthine receptors, the cochlear receptors, and the spiral ganglion induced collateral sprouting in rat vestibular and auditory brainstem nuclei, using growth-associated protein-43 (GAP-43) as an indicator of synaptic remodeling. Both immunocytochemistry and in situ hybridization(More)
Inhibition of central nervous system cholinesterase with a single pulse of physostigmine induces a pronounced increase of blood flow in the neocortex, cingulate gyrus, claustrum, and amygdala. This phenomenon is not accompanied by an increase in energy metabolism and may help explain the effect of this drug on memory in normal humans and patients with(More)
  • 1