Learn More
We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of(More)
Digital microfluidics (DMF) is an emerging liquid-handling technology that enables individual control over droplets on an open array of electrodes. These picoliter- to microliter-sized droplets, each serving as an isolated vessel for chemical processes, can be made to move, merge, split, and dispense from reservoirs. Because of its unique advantages,(More)
Immunoassays have greatly benefited from miniaturization in microfluidic systems. This review, which summarizes developments in microfluidics-based immunoassays since 2000, includes four sections, focusing on the configurations of immunoassays that have been implemented in microfluidics, the main fluid handling modalities that have been used for(More)
A digital microfluidic (DMF) device was applied to a heterogeneous sandwich immunoassay. The digital approach to microfluidics manipulates samples and reagents in the form of discrete droplets, as opposed to the streams of fluid used in microchannels. Since droplets are manipulated on relatively generic 2-D arrays of electrodes, DMF devices are(More)
The first example of so-called "digital microfluidics" (DMF) implemented on paper by inkjet printing is reported. A sandwich enzyme-linked immunosorbent assay (ELISA) is demonstrated as an example of a complex, multistep protocol that would be difficult to achieve with capillary-driven paper microfluidics. Furthermore, it is shown that paper-based DMF(More)
We introduce an automated digital microfluidic (DMF) platform capable of performing immunoassays from sample to analysis with minimal manual intervention. This platform features (a) a 90 Pogo pin interface for digital microfluidic control, (b) an integrated (and motorized) photomultiplier tube for chemiluminescent detection, and (c) a magnetic lens assembly(More)
Digital microfluidics (DMF) has emerged as a popular format for implementing quantitative immunoassays for diagnostic biomarkers. All previous reports of such assays have relied on optical detection; here, we introduce the first digital microfluidic immunoassay relying on electrochemical detection. In this system, an indium tin oxide (ITO) based DMF top(More)
BACKGROUND Whereas disease surveillance for infectious diseases such as rubella is important, it is critical to identify pregnant women at risk of passing rubella to their offspring, which can be fatal and can result in congenital rubella syndrome (CRS). The traditional centralized model for diagnosing rubella is cost-prohibitive in resource-limited(More)
We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth(More)