A. Bur

Learn More
We demonstrate in situ 90° electric field-induced uniform magnetization rotation in single domain submicron ferromagnetic islands grown on a ferroelectric single crystal using x-ray photoemission electron microscopy. The experimental findings are well correlated with micromagnetic simulations, showing that the reorientation occurs by the strain-induced(More)
In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg 1/3 Nb 2/3)O 3 ] (1Àx) –[PbTiO(More)
We provide a progress update on the spin wave nanofabric. The nanofabric comprises magneto-electric cells and spin wave buses serving for spin wave propagation. The magneto-electric cells are used as the input/output ports for information transfer between the charge and the spin domains, while information processing inside the nanofabric is via spin waves(More)
Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model, assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes(More)
  • 1