Learn More
The response of proteins to different forms of stress continues to be a topic of major interest, especially with the proliferation of electromagnetic devices conjectured to have detrimental effects on human health. In this paper, we have performed molecular dynamics simulations on insulin chain-B under the influence of both static and oscillating electric(More)
Epitaxial circuitry offers a revolution in silicon technology, with components that can be fabricated on atomic scales. We perform the first ab initio calculation of atomically thin epitaxial nanowires in silicon, investigating the fundamental electronic properties of wires two P atoms thick, similar to those produced this year by Weber et al. For the first(More)
There are many unanswered questions regarding the precise way in which proteins respond to external stress. Since the function of proteins is critically linked to their three-dimensional structures, exposure to any form of stress which may induce changes in conformation can potentially initiate severe cellular dysfunction. This is particularly relevant with(More)
Multiple molecular dynamics simulations totaling more than 100 ns were performed on chain B of insulin in explicit solvent at 300 K and 400 K. Despite some individual variations, a comparison of the protein dynamics of each simulation showed similar trends and most structures were consistent with NMR experimental values, even at the elevated temperature.(More)
We have conducted a series of theoretical simulations of insulin chain-B under different electric field conditions. This work extends our previous studies of the isolated chain-B by including chain-A and revealing the effects of chemical stress. For this complete protein, we observed increased stability under ambient conditions and under the application of(More)
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due(More)
The increasing use of digital technologies such as mobile phones has led to major health concerns about the effects of non-ionizing pulsed radiation exposure. We believe that the health implications of exposure to radiation cannot be fully understood without establishing the molecular mechanisms of biological effects of pulsed microwaves. We aim to(More)
The electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene(More)
IN THE MIDST OF THE EPITAXIAL CIRCUITRY REVOLUTION IN SILICON TECHNOLOGY, WE LOOK AHEAD TO THE NEXT PARADIGM SHIFT: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of(More)
3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction in coupling efficiency, thus decreasing the product quality and the(More)