A. Borgheresi

Learn More
1. Growing evidence points toward involvement of the human motor cortex in the control of the ipsilateral hand. We used focal transcranial magnetic stimulation (TMS) to examine the pathways of these ipsilateral motor effects. 2. Ipsilateral motor-evoked potentials (MEPs) were obtained in hand and arm muscles of all 10 healthy adult subjects tested. They(More)
Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy(More)
Unilateral movements are enabled through a distributed network of motor cortical areas but the relative contribution from the parts of this network is largely unknown. Failure of this network potentially results in mirror activation of the primary motor cortex (M1) ipsilateral to the intended movement. Here we tested the role of the right dorsal premotor(More)
The neurophysiological hallmark of congenital mirror movements (MM) are fast-conducting corticospinal projections from the hand area of one primary motor cortex to both sides of the spinal cord. It is still unclear whether the abnormal ipsilateral projection originates through branching fibres from the normal contralateral projection or constitutes a(More)
A distributed cortical network enables the lateralization of intended unimanual movements, i.e., the transformation from a default mirror movement to a unimanual movement. Little is known about the exact functional organization of this “non-mirror transformation” network. Involvement of the right dorsal premotor cortex (dPMC) was suggested because its(More)
PURPOSE To assess the effectiveness of slow repetitive transcranial magnetic stimulation (rTMS) as an adjunctive treatment for drug-resistant epilepsy. METHODS Forty-three patients with drug-resistant epilepsy from eight Italian Centers underwent a randomized, double-blind, sham-controlled, crossover study on the clinical and EEG effects of slow rTMS. The(More)
OBJECTIVES To investigate the reorganization of somatosensory and motor cortex in congenital brain injury. METHODS We recorded motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) and somatosensory evoked potentials (SEPs) in a 41 year old man with severe congenital right hemiparesis but only mild proprioceptive impairment.(More)
OBJECTIVE To investigate the after-effects of 0.3 Hz repetitive transcranial magnetic stimulation (rTMS) on excitatory and inhibitory mechanisms at the primary motor cortex level, as tested by single-pulse TMS variables. METHODS In 9 healthy subjects, we studied a wide set of neurophysiological and behavioral variables from the first dorsal interosseous(More)
The silent period (SP) following transcranial magnetic stimulation (TMS) of the motor cortex is mainly due to cortical inhibitory mechanisms. The aim of the present study was to investigate these inhibitory phenomena in primary motor cortex epilepsy. We studied the TMS-induced SP in both the first dorsal interosseous (FDI) muscles in 8 patients who suffered(More)