A Ben Houria

Learn More
Highly correlated ab initio methods were used in order to generate the potential-energy curves of the SO+ electronic states correlating to S+(4Su)+O(3Pg) and S+(2Du)+O(3Pg). These curves were used for deducing accurate spectroscopic properties for these electronic states. Our calculations predict the existence of a 2Phi state lying close in energy to the(More)
Highly correlated ab initio methods were used in order to generate the potential energy curves of the electronic states of the SO(2+) dication and of the electronic ground state of the neutral SO molecule. These curves were used to predict the spectroscopic properties of this dication and to perform forward calculations of the double photoionization(More)
Accurate ab initio calculations are performed to investigate the stable isomers of [MgO(3)](+) and its lowest electronic states at both molecular and asymptotic regions. The calculations are done using large basis sets and configuration interaction methods including the complete active space self-consistent field, the internally contracted multi-reference(More)
We used multiconfigurational methods and a large basis set to compute the potential energy curves of the valence and valence-Rydberg electronic states of MgO molecule. New bound electronic states are found. Using these highly correlated wave functions, we evaluated their mutual spin-orbit couplings and transition moment integrals. For the bound electronic(More)
  • 1